BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35365716)

  • 1. Cryogenic TEM imaging of artificial light harvesting complexes outside equilibrium.
    Krishnaswamy SR; Gabrovski IA; Patmanidis I; Stuart MCA; de Vries AH; Pshenichnikov MS
    Sci Rep; 2022 Apr; 12(1):5552. PubMed ID: 35365716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of supramolecular hollow nanotubes with atomistic simulations and SAXS.
    Patmanidis I; de Vries AH; Wassenaar TA; Wang W; Portale G; Marrink SJ
    Phys Chem Chem Phys; 2020 Sep; 22(37):21083-21093. PubMed ID: 32945311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-Inspired Surface Coating to Stabilize and Functionalize Supramolecular
    Zhang Y; Lou H; Zhang W; Wang M
    Langmuir; 2022 Jul; 38(26):8160-8168. PubMed ID: 35732001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic out-of-equilibrium control of molecular nanotubes.
    Kriete B; Feenstra CJ; Pshenichnikov MS
    Phys Chem Chem Phys; 2020 May; 22(18):10179-10188. PubMed ID: 32347288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging new transient nanostructures using a microfluidic chip integrated with a controlled environment vitrification system for cryogenic transmission electron microscopy.
    Lee J; Jha AK; Bose A; Tripathi A
    Langmuir; 2008 Nov; 24(22):12738-41. PubMed ID: 18947241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.
    Sengupta S; Würthner F
    Acc Chem Res; 2013 Nov; 46(11):2498-512. PubMed ID: 23865851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotubes of Biomimetic Supramolecules Constructed by Synthetic Metal Chlorophyll Derivatives.
    Shoji S; Ogawa T; Hashishin T; Ogasawara S; Watanabe H; Usami H; Tamiaki H
    Nano Lett; 2016 Jun; 16(6):3650-4. PubMed ID: 27172060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy.
    Cui H; Hodgdon TK; Kaler EW; Abezgauz L; Danino D; Lubovsky M; Talmon Y; Pochan DJ
    Soft Matter; 2007 Jul; 3(8):945-955. PubMed ID: 32900043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Watching Molecular Nanotubes Self-Assemble in Real Time.
    Manrho M; Krishnaswamy SR; Kriete B; Patmanidis I; de Vries AH; Marrink SJ; Jansen TLC; Knoester J; Pshenichnikov MS
    J Am Chem Soc; 2023 Oct; 145(41):22494-22503. PubMed ID: 37800477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays.
    Zhu K; Neale NR; Miedaner A; Frank AJ
    Nano Lett; 2007 Jan; 7(1):69-74. PubMed ID: 17212442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of self-assembled glycolipid nanotubes with bilayer sheets.
    Yoshida K; Minamikawa H; Kamiya S; Shimizu T; Isoda S
    J Nanosci Nanotechnol; 2007 Mar; 7(3):960-4. PubMed ID: 17450859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids.
    Kleinerman O; Parra-Vasquez AN; Green MJ; Behabtu N; Schmidt J; Kesselman E; Young CC; Cohen Y; Pasquali M; Talmon Y
    J Microsc; 2015 Jul; 259(1):16-25. PubMed ID: 25818279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double-wall TiO2 nanotube arrays: enhanced photocatalytic activity and in situ TEM observations at high temperature.
    Xue C; Narushima T; Ishida Y; Tokunaga T; Yonezawa T
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19924-32. PubMed ID: 25401270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removing structural disorder from oriented TiO2 nanotube arrays: reducing the dimensionality of transport and recombination in dye-sensitized solar cells.
    Zhu K; Vinzant TB; Neale NR; Frank AJ
    Nano Lett; 2007 Dec; 7(12):3739-46. PubMed ID: 17983250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Measurement of Energy Migration in Supramolecular Carbocyanine Dye Nanotubes.
    Clark KA; Krueger EL; Vanden Bout DA
    J Phys Chem Lett; 2014 Jul; 5(13):2274-82. PubMed ID: 26279546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical growth of fluorescent dye aggregates in water by fusion of segmented nanostructures.
    Zhang X; Görl D; Stepanenko V; Würthner F
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1270-4. PubMed ID: 24352910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-Induced Reassembly between Protein Nanotubes and Nanospheres.
    Zhang J; Liu B; Li D; Radiom M; Zhang H; Cohen Stuart MA; Sagis LMC; Li Z; Chen S; Li X; Li Y
    Biomacromolecules; 2023 Sep; 24(9):3985-3995. PubMed ID: 37642585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures.
    Perez I; Robertson E; Banerjee P; Henn-Lecordier L; Son SJ; Lee SB; Rubloff GW
    Small; 2008 Aug; 4(8):1223-32. PubMed ID: 18623293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial adhesion and inactivation on Ag decorated TiO
    Hajjaji A; Elabidi M; Trabelsi K; Assadi AA; Bessais B; Rtimi S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():92-98. PubMed ID: 29894837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-atomic-resolution structure of J-aggregated helical light-harvesting nanotubes.
    Deshmukh AP; Zheng W; Chuang C; Bailey AD; Williams JA; Sletten EM; Egelman EH; Caram JR
    Nat Chem; 2024 May; 16(5):800-808. PubMed ID: 38316987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.