These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35365726)
1. XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set. Sikander R; Ghulam A; Ali F Sci Rep; 2022 Apr; 12(1):5505. PubMed ID: 35365726 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based model for accurate identification of druggable proteins using light extreme gradient boosting. Alghushairy O; Ali F; Alghamdi W; Khalid M; Alsini R; Asiry O J Biomol Struct Dyn; 2024; 42(22):12330-12341. PubMed ID: 37850427 [TBL] [Abstract][Full Text] [Related]
3. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463 [TBL] [Abstract][Full Text] [Related]
4. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework. Gaffar S; Tayara H; Chong KT Comput Biol Med; 2024 May; 174():108438. PubMed ID: 38613893 [TBL] [Abstract][Full Text] [Related]
5. A Novel Algorithm to Estimate the Significance Level of a Feature Interaction Using the Extreme Gradient Boosting Machine. Guo CY; Chang KH Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206527 [TBL] [Abstract][Full Text] [Related]
6. T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm. Chen T; Wang X; Chu Y; Wang Y; Jiang M; Wei DQ; Xiong Y Front Microbiol; 2020; 11():580382. PubMed ID: 33072049 [TBL] [Abstract][Full Text] [Related]
7. Prediction of antifreeze proteins using machine learning. Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775 [TBL] [Abstract][Full Text] [Related]
8. Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study. Yu JR; Chen CH; Huang TW; Lu JJ; Chung CR; Lin TW; Wu MH; Tseng YJ; Wang HY J Med Internet Res; 2022 Jan; 24(1):e28036. PubMed ID: 35076405 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning-Based Classification of Lignocellulosic Biomass from Pyrolysis-Molecular Beam Mass Spectrometry Data. Nag A; Gerritsen A; Doeppke C; Harman-Ware AE Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921121 [TBL] [Abstract][Full Text] [Related]
10. MLASM: Machine learning based prediction of anticancer small molecules. Balaji PD; Selvam S; Sohn H; Madhavan T Mol Divers; 2024 Aug; 28(4):2153-2161. PubMed ID: 38554168 [TBL] [Abstract][Full Text] [Related]
11. Explainable Machine Learning-Based Prediction Model for Diabetic Nephropathy. Yin JM; Li Y; Xue JT; Zong GW; Fang ZZ; Zou L J Diabetes Res; 2024; 2024():8857453. PubMed ID: 38282659 [TBL] [Abstract][Full Text] [Related]
12. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Charoenkwan P; Ahmed S; Nantasenamat C; Quinn JMW; Moni MA; Lio' P; Shoombuatong W Sci Rep; 2022 May; 12(1):7697. PubMed ID: 35546347 [TBL] [Abstract][Full Text] [Related]
13. Prediction of progression rate and fate of osteoarthritis: Comparison of machine learning algorithms. Yoo HJ; Jeong HW; Kim SW; Kim M; Lee JI; Lee YS J Orthop Res; 2023 Mar; 41(3):583-590. PubMed ID: 35716159 [TBL] [Abstract][Full Text] [Related]
14. Machine learning-based approach for prediction of ion channels and their subclasses. Singh A; Tiwari AK J Cell Biochem; 2023 Jan; 124(1):72-88. PubMed ID: 36271914 [TBL] [Abstract][Full Text] [Related]
15. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides. Pandey P; Patel V; George NV; Mallajosyula SS J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609 [TBL] [Abstract][Full Text] [Related]
16. Effective cardiac disease classification using FS-XGB and GWO approach. S DL; R J Med Eng Phys; 2024 Oct; 132():104239. PubMed ID: 39428137 [TBL] [Abstract][Full Text] [Related]
17. Using Machine Learning Methods to Predict Bone Metastases in Breast Infiltrating Ductal Carcinoma Patients. Liu WC; Li MX; Wu SN; Tong WL; Li AA; Sun BL; Liu ZL; Liu JM Front Public Health; 2022; 10():922510. PubMed ID: 35875050 [TBL] [Abstract][Full Text] [Related]
18. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree. Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569 [TBL] [Abstract][Full Text] [Related]
19. iBCE-EL: A New Ensemble Learning Framework for Improved Linear B-Cell Epitope Prediction. Manavalan B; Govindaraj RG; Shin TH; Kim MO; Lee G Front Immunol; 2018; 9():1695. PubMed ID: 30100904 [TBL] [Abstract][Full Text] [Related]
20. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]