These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35365907)

  • 1. Prediction of NB-LRR resistance genes based on full-length sequence homology.
    Andolfo G; Dohm JC; Himmelbauer H
    Plant J; 2022 Jun; 110(6):1592-1602. PubMed ID: 35365907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq.
    Andolfo G; Jupe F; Witek K; Etherington GJ; Ercolano MR; Jones JD
    BMC Plant Biol; 2014 May; 14():120. PubMed ID: 24885638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Tomato Interspecific NB-LRR Gene Arsenal and Its Impact on Breeding Strategies.
    Andolfo G; D'Agostino N; Frusciante L; Ercolano MR
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33514027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket.
    Sueldo DJ; Shimels M; Spiridon LN; Caldararu O; Petrescu AJ; Joosten MH; Tameling WI
    New Phytol; 2015 Oct; 208(1):210-23. PubMed ID: 26009937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations.
    Jupe F; Witek K; Verweij W; Sliwka J; Pritchard L; Etherington GJ; Maclean D; Cock PJ; Leggett RM; Bryan GJ; Cardle L; Hein I; Jones JD
    Plant J; 2013 Nov; 76(3):530-44. PubMed ID: 23937694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NB-LRR genes: characteristics in three Solanum species and transcriptional response to Ralstonia solanacearum in tomato.
    Shi JL; Zai WS; Xiong ZL; Wan HJ; Wu WR
    Planta; 2021 Oct; 254(5):96. PubMed ID: 34655339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants.
    Postma WJ; Slootweg EJ; Rehman S; Finkers-Tomczak A; Tytgat TO; van Gelderen K; Lozano-Torres JL; Roosien J; Pomp R; van Schaik C; Bakker J; Goverse A; Smant G
    Plant Physiol; 2012 Oct; 160(2):944-54. PubMed ID: 22904163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Tomato Nucleotide Binding Sites-Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to Phytophthora infestans.
    Jiang N; Cui J; Meng J; Luan Y
    Phytopathology; 2018 Aug; 108(8):980-987. PubMed ID: 29595084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide genetic map of NB-LRR disease resistance loci in potato.
    Bakker E; Borm T; Prins P; van der Vossen E; Uenk G; Arens M; de Boer J; van Eck H; Muskens M; Vossen J; van der Linden G; van Ham R; Klein-Lankhorst R; Visser R; Smant G; Bakker J; Goverse A
    Theor Appl Genet; 2011 Aug; 123(3):493-508. PubMed ID: 21590328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens.
    Narusaka M; Kubo Y; Hatakeyama K; Imamura J; Ezura H; Nanasato Y; Tabei Y; Takano Y; Shirasu K; Narusaka Y
    PLoS One; 2013; 8(2):e55954. PubMed ID: 23437080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.
    Gonzalez-Cendales Y; Catanzariti AM; Baker B; Mcgrath DJ; Jones DA
    Mol Plant Pathol; 2016 Apr; 17(3):448-63. PubMed ID: 26177154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Sm gene conferring resistance to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato.
    Yang H; Wang H; Jiang J; Liu M; Liu Z; Tan Y; Zhao T; Zhang H; Chen X; Li J; Wang A; Du M; Xu X
    Theor Appl Genet; 2022 May; 135(5):1467-1476. PubMed ID: 35165745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcomplementation, but not physical association of the CC-NB-ARC and LRR domains of tomato R protein Mi-1.2 is altered by mutations in the ARC2 subdomain.
    van Ooijen G; Mayr G; Albrecht M; Cornelissen BJ; Takken FL
    Mol Plant; 2008 May; 1(3):401-10. PubMed ID: 19825549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants.
    Hofberger JA; Zhou B; Tang H; Jones JD; Schranz ME
    BMC Genomics; 2014 Nov; 15(1):966. PubMed ID: 25380807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1.
    Catanzariti AM; Do HT; Bru P; de Sain M; Thatcher LF; Rep M; Jones DA
    Plant J; 2017 Mar; 89(6):1195-1209. PubMed ID: 27995670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution.
    Andolfo G; Sánchez CS; Cañizares J; Pico MB; Ercolano MR
    Planta; 2021 Sep; 254(4):82. PubMed ID: 34559316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato.
    Yamaguchi H; Ohnishi J; Saito A; Ohyama A; Nunome T; Miyatake K; Fukuoka H
    Theor Appl Genet; 2018 Jun; 131(6):1345-1362. PubMed ID: 29532116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics.
    Andolfo G; Sanseverino W; Rombauts S; Van de Peer Y; Bradeen JM; Carputo D; Frusciante L; Ercolano MR
    New Phytol; 2013 Jan; 197(1):223-237. PubMed ID: 23163550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis.
    Pan Q; Liu YS; Budai-Hadrian O; Sela M; Carmel-Goren L; Zamir D; Fluhr R
    Genetics; 2000 May; 155(1):309-22. PubMed ID: 10790405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins.
    Gabriëls SH; Vossen JH; Ekengren SK; van Ooijen G; Abd-El-Haliem AM; van den Berg GC; Rainey DY; Martin GB; Takken FL; de Wit PJ; Joosten MH
    Plant J; 2007 Apr; 50(1):14-28. PubMed ID: 17346268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.