These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35365907)

  • 21. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3.
    Schornack S; Ballvora A; Gürlebeck D; Peart J; Baulcombe D; Ganal M; Baker B; Bonas U; Lahaye T
    Plant J; 2004 Jan; 37(1):46-60. PubMed ID: 14675431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence Exchange between Homologous NB-LRR Genes Converts Virus Resistance into Nematode Resistance, and Vice Versa.
    Slootweg E; Koropacka K; Roosien J; Dees R; Overmars H; Lankhorst RK; van Schaik C; Pomp R; Bouwman L; Helder J; Schots A; Bakker J; Smant G; Goverse A
    Plant Physiol; 2017 Sep; 175(1):498-510. PubMed ID: 28747428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.
    Sohn KH; Segonzac C; Rallapalli G; Sarris PF; Woo JY; Williams SJ; Newman TE; Paek KH; Kobe B; Jones JD
    PLoS Genet; 2014 Oct; 10(10):e1004655. PubMed ID: 25340333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis.
    Zhu X; Lu C; Du L; Ye X; Liu X; Coules A; Zhang Z
    Plant Biotechnol J; 2017 Jun; 15(6):674-687. PubMed ID: 27862842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.
    Zou S; Wang H; Li Y; Kong Z; Tang D
    New Phytol; 2018 Apr; 218(1):298-309. PubMed ID: 29281751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2.
    Van Ooijen G; Lukasik E; Van Den Burg HA; Vossen JH; Cornelissen BJ; Takken FL
    Plant J; 2010 Aug; 63(4):563-72. PubMed ID: 20497382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.
    Mantelin S; Peng HC; Li B; Atamian HS; Takken FL; Kaloshian I
    Plant J; 2011 Aug; 67(3):459-71. PubMed ID: 21481032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of recognition in dominant R gene mediated resistance.
    Moffett P
    Adv Virus Res; 2009; 75():1-33. PubMed ID: 20109662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NB-LRR Lineage-Specific Equipment Is Sorted Out by Sequence Pattern Adaptation and Domain Segment Shuffling.
    Andolfo G; Di Donato A; Ercolano MR
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and localisation of the NB-LRR gene family within the potato genome.
    Jupe F; Pritchard L; Etherington GJ; Mackenzie K; Cock PJ; Wright F; Sharma SK; Bolser D; Bryan GJ; Jones JD; Hein I
    BMC Genomics; 2012 Feb; 13():75. PubMed ID: 22336098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.
    Rairdan GJ; Collier SM; Sacco MA; Baldwin TT; Boettrich T; Moffett P
    Plant Cell; 2008 Mar; 20(3):739-51. PubMed ID: 18344282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence.
    Meziadi C; Richard MMS; Derquennes A; Thareau V; Blanchet S; Gratias A; Pflieger S; Geffroy V
    Plant Sci; 2016 Jan; 242():351-357. PubMed ID: 26566851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of a complex disease resistance gene cluster in diploid Phaseolus and tetraploid Glycine.
    Ashfield T; Egan AN; Pfeil BE; Chen NW; Podicheti R; Ratnaparkhe MB; Ameline-Torregrosa C; Denny R; Cannon S; Doyle JJ; Geffroy V; Roe BA; Saghai Maroof MA; Young ND; Innes RW
    Plant Physiol; 2012 May; 159(1):336-54. PubMed ID: 22457424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual regulatory roles of the extended N terminus for activation of the tomato MI-1.2 resistance protein.
    Lukasik-Shreepaathy E; Slootweg E; Richter H; Goverse A; Cornelissen BJ; Takken FL
    Mol Plant Microbe Interact; 2012 Aug; 25(8):1045-57. PubMed ID: 22512381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TNL genes in peach: insights into the post-LRR domain.
    Van Ghelder C; Esmenjaud D
    BMC Genomics; 2016 Apr; 17():317. PubMed ID: 27129402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis.
    Sinapidou E; Williams K; Nott L; Bahkt S; Tör M; Crute I; Bittner-Eddy P; Beynon J
    Plant J; 2004 Jun; 38(6):898-909. PubMed ID: 15165183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss and retention of resistance genes in five species of the Brassicaceae family.
    Peele HM; Guan N; Fogelqvist J; Dixelius C
    BMC Plant Biol; 2014 Nov; 14():298. PubMed ID: 25365911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral Effector Perception.
    Li J; Huang H; Zhu M; Huang S; Zhang W; Dinesh-Kumar SP; Tao X
    Mol Plant; 2019 Feb; 12(2):248-262. PubMed ID: 30639751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain.
    Chen X; Zhu M; Jiang L; Zhao W; Li J; Wu J; Li C; Bai B; Lu G; Chen H; Moffett P; Tao X
    New Phytol; 2016 Oct; 212(1):161-75. PubMed ID: 27558751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria.
    Wen Z; Yao L; Singer SD; Muhammad H; Li Z; Wang X
    Plant Physiol Biochem; 2017 Mar; 112():346-361. PubMed ID: 28131063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.