These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35366348)

  • 1. Analysis of U87 glioma cells by dielectrophoresis.
    Sengul E; Sharbati P; Elitas M; Islam M; Korvink JG
    Electrophoresis; 2022 Jun; 43(12):1357-1365. PubMed ID: 35366348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying Deformation and Migration Properties of U87 Glioma Cells Using Dielectrophoretic Forces.
    Elitas M; Islam M; Korvink JG; Sengul E; Sharbati P; Ozogul B; Kaymaz SV
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term migratory velocity measurements of single glioma cells using microfluidics.
    Sengul E; Elitas M
    Analyst; 2021 Aug; 146(16):5143-5149. PubMed ID: 34282810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Cell Level Dielectrophoretic Responses & Dielectrophoretic Deformations of Monocytes to Quantify Population Heterogeneity.
    Sengul E; Kara O; Yildizhan Y; Martinez-Duarte R; Elitas M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2221-2226. PubMed ID: 33018449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic deformation of breast cancer cells for lab on a chip applications.
    Chan JY; Ahmad Kayani AB; Md Ali MA; Kok CK; Ramdzan Buyong M; Hoe SLL; Marzuki M; Soo-Beng Khoo A; Sriram S; Ostrikov KK
    Electrophoresis; 2019 Oct; 40(20):2728-2735. PubMed ID: 31219180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines.
    Torres-Castro K; Honrado C; Varhue WB; Farmehini V; Swami NS
    Anal Bioanal Chem; 2020 Jun; 412(16):3847-3857. PubMed ID: 32128645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
    Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A
    Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Lipid Content Screening in
    Galicia-Medina CM; Vázquez-Piñón M; Alemán-Nava GS; Gallo-Villanueva RC; Martínez-Chapa SO; Madou MJ; Camacho-León S; García-Pérez JS; Esquivel-Hernández DA; Parra-Saldívar R; Pérez-González VH
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells.
    Mustafa A; Pedone E; Marucci L; Moschou D; Lorenzo MD
    Electrophoresis; 2022 Feb; 43(3):501-508. PubMed ID: 34717293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of a Dielectrophoretic Tapered Aluminum Microelectrode Array with a Flow Focusing Technique.
    Rashid NFA; Deivasigamani R; Wee MFMR; Hamzah AA; Buyong MR
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative dielectrophoretic tracking for characterization and separation of persistent subpopulations of Cryptosporidium parvum.
    Su YH; Tsegaye M; Varhue W; Liao KT; Abebe LS; Smith JA; Guerrant RL; Swami NS
    Analyst; 2014 Jan; 139(1):66-73. PubMed ID: 24225592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The feasibility of using dielectrophoresis for isolation of glioblastoma subpopulations with increased stemness.
    Alinezhadbalalami N; Douglas TA; Balani N; Verbridge SS; Davalos RV
    Electrophoresis; 2019 Sep; 40(18-19):2592-2600. PubMed ID: 31127957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
    Clark PA; Bhattacharya S; Elmayan A; Darjatmoko SR; Thuro BA; Yan MB; van Ginkel PR; Polans AS; Kuo JS
    J Neurosurg; 2017 May; 126(5):1448-1460. PubMed ID: 27419830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoretic separation of monocytes from cancer cells in a microfluidic chip using electrode pitch optimization.
    Zahedi Siani O; Zabetian Targhi M; Sojoodi M; Movahedin M
    Bioprocess Biosyst Eng; 2020 Sep; 43(9):1573-1586. PubMed ID: 32328730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Heterogeneity According to Deformation of the U937 Monocytes and U937-Differentiated Macrophages Using 3D Carbon Dielectrophoresis in Microfluidics.
    Elitas M; Sengul E
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32521676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.
    Bakewell DJ; Morgan H
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):139-46. PubMed ID: 16805110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.