These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35366573)
1. How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems - A historical perspective. Peters WS; Knoblauch M J Plant Physiol; 2022 May; 272():153672. PubMed ID: 35366573 [TBL] [Abstract][Full Text] [Related]
2. Phloem hydrostatic pressure relates to solute loading rate: a direct test of the Münch hypothesis. Gould N; Thorpe MR; Koroleva O; Minchin PEH Funct Plant Biol; 2005 Nov; 32(11):1019-1026. PubMed ID: 32689197 [TBL] [Abstract][Full Text] [Related]
3. Testing the Münch hypothesis of long distance phloem transport in plants. Knoblauch M; Knoblauch J; Mullendore DL; Savage JA; Babst BA; Beecher SD; Dodgen AC; Jensen KH; Holbrook NM Elife; 2016 Jun; 5():. PubMed ID: 27253062 [TBL] [Abstract][Full Text] [Related]
4. Münch, morphology, microfluidics - our structural problem with the phloem. Knoblauch M; Peters WS Plant Cell Environ; 2010 Sep; 33(9):1439-52. PubMed ID: 20525003 [TBL] [Abstract][Full Text] [Related]
5. Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. Thompson MV; Holbrook NM J Theor Biol; 2003 Feb; 220(4):419-55. PubMed ID: 12623280 [TBL] [Abstract][Full Text] [Related]
6. A Mathematical Treatment of Munch's Pressure-Flow Hypothesis of Phloem Translocation. Christy AL; Ferrier JM Plant Physiol; 1973 Dec; 52(6):531-8. PubMed ID: 16658599 [TBL] [Abstract][Full Text] [Related]
7. Does Don Fisher's high-pressure manifold model account for phloem transport and resource partitioning? Patrick JW Front Plant Sci; 2013; 4():184. PubMed ID: 23802003 [TBL] [Abstract][Full Text] [Related]
8. Computational models evaluating the impact of sieve plates and radial water exchange on phloem pressure gradients. Stanfield RC; Schulte PJ; Randolph KE; Hacke UG Plant Cell Environ; 2019 Feb; 42(2):466-479. PubMed ID: 30074610 [TBL] [Abstract][Full Text] [Related]
9. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation. Froelich DR; Mullendore DL; Jensen KH; Ross-Elliott TJ; Anstead JA; Thompson GA; Pélissier HC; Knoblauch M Plant Cell; 2011 Dec; 23(12):4428-45. PubMed ID: 22198148 [TBL] [Abstract][Full Text] [Related]
10. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates. Knoblauch J; Peters WS; Knoblauch M Ann Bot; 2016 Apr; 117(4):599-606. PubMed ID: 26929203 [TBL] [Abstract][Full Text] [Related]
11. Sieve elements rapidly develop 'nacreous walls' following injury - a common wounding response? Knoblauch J; Knoblauch M; Vasina VV; Peters WS Plant J; 2020 May; 102(4):797-808. PubMed ID: 31883138 [TBL] [Abstract][Full Text] [Related]
12. Estimation of Osmotic Gradients in Soybean Sieve Tubes by Quantitative Autoradiography: Qualified Support for the MUnch Hypothesis. Housley TL; Fisher DB Plant Physiol; 1977 Apr; 59(4):701-6. PubMed ID: 16659921 [TBL] [Abstract][Full Text] [Related]
13. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? Knoblauch J; Tepler Drobnitch S; Peters WS; Knoblauch M Plant Cell Environ; 2016 Aug; 39(8):1727-36. PubMed ID: 26991892 [TBL] [Abstract][Full Text] [Related]
15. Direct measurements of sieve element hydrostatic pressure reveal strong regulation after pathway blockage. Gould N; Minchin PEH; Thorpe MR Funct Plant Biol; 2004 Nov; 31(10):987-993. PubMed ID: 32688967 [TBL] [Abstract][Full Text] [Related]
16. Phloem transport: a review of mechanisms and controls. De Schepper V; De Swaef T; Bauweraerts I; Steppe K J Exp Bot; 2013 Nov; 64(16):4839-50. PubMed ID: 24106290 [TBL] [Abstract][Full Text] [Related]
17. What actually is the Münch hypothesis? A short history of assimilate transport by mass flow. Knoblauch M; Peters WS J Integr Plant Biol; 2017 May; 59(5):292-310. PubMed ID: 28276639 [TBL] [Abstract][Full Text] [Related]
18. Universality of phloem transport in seed plants. Jensen KH; Liesche J; Bohr T; Schulz A Plant Cell Environ; 2012 Jun; 35(6):1065-76. PubMed ID: 22150791 [TBL] [Abstract][Full Text] [Related]
19. The structure of the phloem--still more questions than answers. Knoblauch M; Oparka K Plant J; 2012 Apr; 70(1):147-56. PubMed ID: 22449049 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of the Münch hypothesis for phloem transport in soybean. Fisher DB Planta; 1978 Jan; 139(1):25-8. PubMed ID: 24414101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]