BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35366575)

  • 1. Selective membrane wrapping on differently sized nanoparticles regulated by clathrin assembly: A computational model.
    Li Y; Zhang M; Niu X; Yue T
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112467. PubMed ID: 35366575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides.
    Yan Z; Wu Z; Li S; Zhang X; Yi X; Yue T
    Nanoscale; 2019 Nov; 11(42):19751-19762. PubMed ID: 31384870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracting lipid vesicles from plasma membranes via self-assembly of clathrin-inspired scaffolding nanoparticles.
    Li Y; Zhang X; Lin J; Li R; Yue T
    Colloids Surf B Biointerfaces; 2019 Apr; 176():239-248. PubMed ID: 30623811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of cellular uptake of viruses and nanoparticles via clathrin-mediated endocytosis.
    Banerjee A; Berezhkovskii A; Nossal R
    Phys Biol; 2016 Feb; 13(1):016005. PubMed ID: 26871680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction.
    Yue T; Wang X; Huang F; Zhang X
    Nanoscale; 2013 Oct; 5(20):9888-96. PubMed ID: 23979098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane.
    Chen T; Zhang Y; Li X; Li C; Lu T; Xiao S; Liang H
    J Chem Theory Comput; 2021 Dec; 17(12):7850-7861. PubMed ID: 34865469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry.
    Agudo-Canalejo J; Lipowsky R
    ACS Nano; 2015; 9(4):3704-20. PubMed ID: 25840649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between Nanoparticle Wrapping and Clustering of Inner Anchored Membrane Proteins.
    Yue T; Li S; Xu Y; Zhang X; Huang F
    J Phys Chem B; 2016 Oct; 120(42):11000-11009. PubMed ID: 27723331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):2104-2111. PubMed ID: 29959983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection.
    Palocci C; Valletta A; Chronopoulou L; Donati L; Bramosanti M; Brasili E; Baldan B; Pasqua G
    Plant Cell Rep; 2017 Dec; 36(12):1917-1928. PubMed ID: 28913707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling.
    Liu N; Becton M; Zhang L; Wang X
    J Phys Chem B; 2020 Dec; 124(49):11145-11156. PubMed ID: 33226245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.