BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35366575)

  • 21. Energy and Speed Landscapes of the Membrane Internalization Behavior of Soft Nanoparticles.
    Zhang Z; Ou L; Yang K; Yuan B
    J Phys Chem B; 2024 Mar; 128(11):2632-2639. PubMed ID: 38467492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular Uptake Pathways of Nanoparticles: Process of Endocytosis and Factors Affecting their Fate.
    Varma S; Dey S; Palanisamy D
    Curr Pharm Biotechnol; 2022; 23(5):679-706. PubMed ID: 34264182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Soft Matter; 2019 Jun; 15(25):5128-5137. PubMed ID: 31190048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size Limit and Energy Analysis of Nanoparticles during Wrapping Process by Membrane.
    Meng X; Li X
    Nanomaterials (Basel); 2018 Nov; 8(11):. PubMed ID: 30400180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-surface glycosaminoglycans regulate the cellular uptake of charged polystyrene nanoparticles.
    Olivieri PH; Jesus MB; Nader HB; Justo GZ; Sousa AA
    Nanoscale; 2022 May; 14(19):7350-7363. PubMed ID: 35535683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles.
    Yu Q; Dasgupta S; Auth T; Gompper G
    Nano Lett; 2020 Mar; 20(3):1662-1668. PubMed ID: 32046489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.
    Wang T; Wang L; Li X; Hu X; Han Y; Luo Y; Wang Z; Li Q; Aldalbahi A; Wang L; Song S; Fan C; Zhao Y; Wang M; Chen N
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18619-18625. PubMed ID: 28497682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Freezing or wrapping: the role of particle size in the mechanism of nanoparticle-biomembrane interaction.
    Zhang S; Nelson A; Beales PA
    Langmuir; 2012 Sep; 28(35):12831-7. PubMed ID: 22717012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of cell size on cellular uptake of gold nanoparticles.
    Wang X; Hu X; Li J; Russe AC; Kawazoe N; Yang Y; Chen G
    Biomater Sci; 2016 Jun; 4(6):970-8. PubMed ID: 27095054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical cues modulate cellular uptake of nanoparticles in cancer via clathrin-mediated and caveolae-mediated endocytosis pathways.
    Wei X; Wei R; Jiang G; Jia Y; Lou H; Yang Z; Luo D; Huang Q; Xu S; Yang X; Zhou Y; Li X; Ji T; Hu J; Xi L; Ma D; Ye F; Gao Q
    Nanomedicine (Lond); 2019 Mar; 14(5):613-626. PubMed ID: 30816057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    PLoS One; 2011; 6(9):e24438. PubMed ID: 21949717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature.
    Holkar SS; Kamerkar SC; Pucadyil TJ
    J Biol Chem; 2015 Jun; 290(23):14267-76. PubMed ID: 25837255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Internalization of Titanium Dioxide Nanoparticles Is Mediated by Actin-Dependent Reorganization and Clathrin- and Dynamin-Mediated Endocytosis in H9c2 Rat Cardiomyoblasts.
    Huerta-García E; Ramos-Godinez MDP; López-Saavedra A; Alfaro-Moreno E; Gómez-Crisóstomo NP; Colín-Val Z; Sánchez-Barrera H; López-Marure R
    Chem Res Toxicol; 2019 Apr; 32(4):578-588. PubMed ID: 30730135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of membrane curvature for the wrapping of nanoparticles.
    Bahrami AH; Lipowsky R; Weikl TR
    Soft Matter; 2016 Jan; 12(2):581-7. PubMed ID: 26506073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomanipulation of Ligand Nanogeometry Modulates Integrin/Clathrin-Mediated Adhesion and Endocytosis of Stem Cells.
    Yin B; Zhang Q; Yan J; Huang Y; Li C; Chen J; Wen C; Wong SHD; Yang M
    Nano Lett; 2023 Oct; 23(19):9160-9169. PubMed ID: 37494286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.