BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35366575)

  • 41. Cell-excreted proteins mediate the interactions of differently sized silica nanoparticles during cellular uptake.
    Huang B; Li JM; Zang XM; Wang M; Pan W; Zhang KD; He H; Tan QG; Miao AJ
    J Hazard Mater; 2024 May; 469():133894. PubMed ID: 38452668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy.
    Zhang Y; Li L; Wang J
    Phys Rev E; 2021 Nov; 104(5-1):054405. PubMed ID: 34942735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Folic acid-capped PEGylated magnetic nanoparticles enter cancer cells mostly via clathrin-dependent endocytosis.
    Allard-Vannier E; Hervé-Aubert K; Kaaki K; Blondy T; Shebanova A; Shaitan KV; Ignatova AA; Saboungi ML; Feofanov AV; Chourpa I
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1578-1586. PubMed ID: 27919801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.
    Chakraborty A; Jana NR
    J Phys Chem Lett; 2015 Sep; 6(18):3688-97. PubMed ID: 26722743
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Counterintuitive cooperative endocytosis of like-charged nanoparticles in cellular internalization: computer simulation and experiment.
    Li Y; Yuan B; Yang K; Zhang X; Yan B; Cao D
    Nanotechnology; 2017 Feb; 28(8):085102. PubMed ID: 28054516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Receptor-Mediated Enhanced Cellular Delivery of Nanoparticles Using Recombinant Receptor-Binding Domain of Diphtheria Toxin.
    Agarwal M; Sahoo AK; Bose B
    Mol Pharm; 2017 Jan; 14(1):23-30. PubMed ID: 27959571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Revealing macropinocytosis using nanoparticles.
    Means N; Elechalawar CK; Chen WR; Bhattacharya R; Mukherjee P
    Mol Aspects Med; 2022 Feb; 83():100993. PubMed ID: 34281720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.
    Akamatsu M; Vasan R; Serwas D; Ferrin MA; Rangamani P; Drubin DG
    Elife; 2020 Jan; 9():. PubMed ID: 31951196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting of nanoparticles to the clathrin-mediated endocytic pathway.
    Harush-Frenkel O; Debotton N; Benita S; Altschuler Y
    Biochem Biophys Res Commun; 2007 Feb; 353(1):26-32. PubMed ID: 17184736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellular uptake and intracellular localization of poly (acrylic acid) nanoparticles in a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1.
    Felix LC; Ortega VA; Goss GG
    Aquat Toxicol; 2017 Nov; 192():58-68. PubMed ID: 28917946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells.
    Francia V; Reker-Smit C; Salvati A
    Nano Lett; 2022 Apr; 22(7):3118-3124. PubMed ID: 35377663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates.
    Hsu SH; Ho TT; Tseng TC
    Biomaterials; 2012 May; 33(14):3639-50. PubMed ID: 22364729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells.
    Dombu CY; Kroubi M; Zibouche R; Matran R; Betbeder D
    Nanotechnology; 2010 Sep; 21(35):355102. PubMed ID: 20689164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Core-Shell Approach for Systematically Coarsening Nanoparticle-Membrane Interactions: Application to Silver Nanoparticles.
    Singhal A; Sevink GJA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364637
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells.
    Li Y; Shang L; Nienhaus GU
    Nanoscale; 2016 Apr; 8(14):7423-9. PubMed ID: 27001905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the size-dependent internalization of sub-hundred polymeric nanoparticles.
    Gimondi S; Vieira de Castro J; Reis RL; Ferreira H; Neves NM
    Colloids Surf B Biointerfaces; 2023 May; 225():113245. PubMed ID: 36905835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of particle local curvature in cellular wrapping.
    Khosravanizadeh A; Sens P; Mohammad-Rafiee F
    J R Soc Interface; 2022 Nov; 19(196):20220462. PubMed ID: 36321371
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures.
    Fiorentino I; Gualtieri R; Barbato V; Mollo V; Braun S; Angrisani A; Turano M; Furia M; Netti PA; Guarnieri D; Fusco S; Talevi R
    Exp Cell Res; 2015 Jan; 330(2):240-247. PubMed ID: 25246129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.