These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35366575)

  • 61. Autographa Californica Multiple Nucleopolyhedrovirus Enters Host Cells via Clathrin-Mediated Endocytosis and Direct Fusion with the Plasma Membrane.
    Qin F; Xu C; Lei C; Hu J; Sun X
    Viruses; 2018 Nov; 10(11):. PubMed ID: 30441758
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type.
    Kettler K; Veltman K; van de Meent D; van Wezel A; Hendriks AJ
    Environ Toxicol Chem; 2014 Mar; 33(3):481-92. PubMed ID: 24273100
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Membrane indentation triggers clathrin lattice reorganization and fluidization.
    Cordella N; Lampo TJ; Melosh N; Spakowitz AJ
    Soft Matter; 2015 Jan; 11(3):439-48. PubMed ID: 25412023
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles.
    Shen Z; Ye H; Kröger M; Tang S; Li Y
    Nanoscale; 2019 Aug; 11(34):15971-15983. PubMed ID: 31424067
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures.
    Belli V; Guarnieri D; Biondi M; Della Sala F; Netti PA
    Colloids Surf B Biointerfaces; 2017 Jan; 149():7-15. PubMed ID: 27710850
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol.
    Li Y; Kröger M; Liu WK
    Biomaterials; 2014 Oct; 35(30):8467-78. PubMed ID: 25002266
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
    Agarwal R; Singh V; Jurney P; Shi L; Sreenivasan SV; Roy K
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17247-52. PubMed ID: 24101456
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis.
    Agostinelli D; Elfring GJ; Bacca M
    Soft Matter; 2022 May; 18(18):3531-3545. PubMed ID: 35445221
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Highly cooperative control of endocytosis by clathrin.
    Moskowitz HS; Yokoyama CT; Ryan TA
    Mol Biol Cell; 2005 Apr; 16(4):1769-76. PubMed ID: 15689492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Particle size influences fibronectin internalization and degradation by fibroblasts.
    Bozavikov P; Rajshankar D; Lee W; McCulloch CA
    Exp Cell Res; 2014 Oct; 328(1):172-185. PubMed ID: 24995996
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
    Lundmark R; Carlsson SR
    Semin Cell Dev Biol; 2010 Jun; 21(4):363-70. PubMed ID: 19931628
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Role of nanoparticle size and sialic acids in the distinct time-evolution profiles of nanoparticle uptake in hematopoietic progenitor cells and monocytes.
    Wathiong B; Deville S; Jacobs A; Smisdom N; Gervois P; Lambrichts I; Ameloot M; Hooyberghs J; Nelissen I
    J Nanobiotechnology; 2019 May; 17(1):62. PubMed ID: 31084605
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wrapping anisotropic microgel particles in lipid membranes: Effects of particle shape and membrane rigidity.
    Liu X; Auth T; Hazra N; Ebbesen MF; Brewer J; Gompper G; Crassous JJ; Sparr E
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2217534120. PubMed ID: 37459547
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cooperativity of membrane-protein and protein-protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis.
    Kroppen B; Teske N; Yambire KF; Denkert N; Mukherjee I; Tarasenko D; Jaipuria G; Zweckstetter M; Milosevic I; Steinem C; Meinecke M
    Cell Mol Life Sci; 2021 Mar; 78(5):2355-2370. PubMed ID: 32997199
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Membrane remodeling in clathrin-mediated endocytosis.
    Haucke V; Kozlov MM
    J Cell Sci; 2018 Sep; 131(17):. PubMed ID: 30177505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.