BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35366607)

  • 1. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model.
    Quezado ZMN; Kamimura S; Smith M; Wang X; Heaven MR; Jana S; Vogel S; Zerfas P; Combs CA; Almeida LEF; Li Q; Quezado M; Horkayne-Szakaly I; Kosinski PA; Yu S; Kapadnis U; Kung C; Dang L; Wakim P; Eaton WA; Alayash AI; Thein SL
    Blood Cells Mol Dis; 2022 Jul; 95():102660. PubMed ID: 35366607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Etavopivat, a Pyruvate Kinase Activator in Red Blood Cells, for the Treatment of Sickle Cell Disease.
    Schroeder P; Fulzele K; Forsyth S; Ribadeneira MD; Guichard S; Wilker E; Marshall CG; Drake A; Fessler R; Konstantinidis DG; Seu KG; Kalfa TA
    J Pharmacol Exp Ther; 2022 Mar; 380(3):210-219. PubMed ID: 35031585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease.
    Xu JZ; Vercellotti GM
    Hematology Am Soc Hematol Educ Program; 2023 Dec; 2023(1):107-113. PubMed ID: 38066891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitapivat for sickle cell disease and thalassemia.
    Pilo F; Angelucci E
    Drugs Today (Barc); 2023 Mar; 59(3):125-134. PubMed ID: 36847623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-year safety and efficacy of mitapivat in sickle cell disease: follow-up results of a phase 2, open-label study.
    van Dijk MJ; Rab MAE; van Oirschot BA; Bos J; Derichs C; Rijneveld AW; Cnossen MH; Nur E; Biemond BJ; Bartels M; Jans JJM; van Solinge WW; Schutgens REG; van Wijk R; van Beers EJ
    Blood Adv; 2023 Dec; 7(24):7539-7550. PubMed ID: 37934880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease.
    Xu JZ; Conrey A; Frey I; Gwaabe E; Menapace LA; Tumburu L; Lundt M; Lequang T; Li Q; Glass K; Dunkelberger EB; Iyer V; Mangus H; Kung C; Dang L; Kosinski PA; Hawkins P; Jeffries N; Eaton WA; Lay Thein S
    Blood; 2022 Nov; 140(19):2053-2062. PubMed ID: 35576529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variants of PKLR are associated with acute pain in sickle cell disease.
    Wang X; Gardner K; Tegegn MB; Dalgard CL; Alba C; Menzel S; Patel H; Pirooznia M; Fu YP; Seifuddin FT; Thein SL
    Blood Adv; 2022 Jun; 6(11):3535-3540. PubMed ID: 35271708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of 2,3-DPG knockout on SCD phenotype in Townes SCD model mice.
    Barakat A; Jasuja R; Tomlinson L; Wenzel Z; Ramaiah L; Petterson BA; Kapinos B; Sawant A; Pagan V; Lintner N; Field D; Ahn Y; Knee KM
    Am J Hematol; 2023 Dec; 98(12):1838-1846. PubMed ID: 37688507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of ovarian steroids to erythrocytes in patients with sickle cell disease; effects on cell sickling and osmotic fragility.
    Yoong WC; Tuck SM; Michael AE
    J Steroid Biochem Mol Biol; 2003 Jan; 84(1):71-8. PubMed ID: 12648526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte pyruvate kinase activation in red cell disorders.
    Matte A; Federti E; De Franceschi L
    Curr Opin Hematol; 2023 May; 30(3):93-98. PubMed ID: 36853806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrite decreases sickle hemoglobin polymerization in vitro independently of methemoglobin formation.
    Almeida LEF; Smith ML; Kamimura S; Vogel S; de Souza Batista CM; Quezado ZMN
    Toxicol Appl Pharmacol; 2023 Aug; 473():116606. PubMed ID: 37336294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2,3-Diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S.
    Poillon WN; Kim BC
    Blood; 1990 Sep; 76(5):1028-36. PubMed ID: 2393711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormality of erythrocyte membrane n-3 long chain polyunsaturated fatty acids in sickle cell haemoglobin C (HbSC) disease is not as remarkable as in sickle cell anaemia (HbSS).
    Ren H; Ghebremeskel K; Okpala I; Ugochukwu CC; Crawford M; Ibegbulam O
    Prostaglandins Leukot Essent Fatty Acids; 2006 Jan; 74(1):1-6. PubMed ID: 16314081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Functional Insight of Sphingosine 1-Phosphate-Mediated Pathogenic Metabolic Reprogramming in Sickle Cell Disease.
    Sun K; D'Alessandro A; Ahmed MH; Zhang Y; Song A; Ko TP; Nemkov T; Reisz JA; Wu H; Adebiyi M; Peng Z; Gong J; Liu H; Huang A; Wen YE; Wen AQ; Berka V; Bogdanov MV; Abdulmalik O; Han L; Tsai AL; Idowu M; Juneja HS; Kellems RE; Dowhan W; Hansen KC; Safo MK; Xia Y
    Sci Rep; 2017 Nov; 7(1):15281. PubMed ID: 29127281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease.
    Gopalsamy A; Aulabaugh AE; Barakat A; Beaumont KC; Cabral S; Canterbury DP; Casimiro-Garcia A; Chang JS; Chen MZ; Choi C; Dow RL; Fadeyi OO; Feng X; France SP; Howard RM; Janz JM; Jasti J; Jasuja R; Jones LH; King-Ahmad A; Knee KM; Kohrt JT; Limberakis C; Liras S; Martinez CA; McClure KF; Narayanan A; Narula J; Novak JJ; O'Connell TN; Parikh MD; Piotrowski DW; Plotnikova O; Robinson RP; Sahasrabudhe PV; Sharma R; Thuma BA; Vasa D; Wei L; Wenzel AZ; Withka JM; Xiao J; Yayla HG
    J Med Chem; 2021 Jan; 64(1):326-342. PubMed ID: 33356244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderate and intense muscular exercises induce marked intramyocellular metabolic acidosis in sickle cell disease mice.
    Chatel B; Messonnier LA; Hourdé C; Vilmen C; Bernard M; Bendahan D
    J Appl Physiol (1985); 2017 May; 122(5):1362-1369. PubMed ID: 28280108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cyanate and 2,3-diphosphoglycerate on sickling. Relationship to oxygenation.
    Jensen M; Bunn HF; Halikas G; Kan YW; Nathan DG
    J Clin Invest; 1973 Oct; 52(10):2542-7. PubMed ID: 4729047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium flux alterations in erythrocytes from sickle cell mice: The relevance of mean corpuscular volume.
    Almeida LEF; Smith ML; Kamimura S; Vogel S; Quezado ZMN
    Blood Cells Mol Dis; 2024 Jan; 104():102800. PubMed ID: 37951090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice.
    Taylor CM; Kasztan M; Sedaka R; Molina PA; Dunaway LS; Pollock JS; Pollock DM
    Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R630-R640. PubMed ID: 33624556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.