BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35366764)

  • 1. The Influence of Mitochondrial Energy and 1C Metabolism on the Efficacy of Anticancer Drugs: Exploring Potential Mechanisms of Resistance.
    Franczak M; Toenshoff I; Jansen G; Smolenski RT; Giovannetti E; Peters GJ
    Curr Med Chem; 2023; 30(11):1209-1231. PubMed ID: 35366764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism.
    Liu Y; Sun Y; Guo Y; Shi X; Chen X; Feng W; Wu LL; Zhang J; Yu S; Wang Y; Shi Y
    Int J Biol Sci; 2023; 19(3):897-915. PubMed ID: 36778129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance.
    Tomar MS; Kumar A; Shrivastava A
    Biochem Biophys Res Commun; 2024 Jan; 694():149382. PubMed ID: 38128382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.
    Pathania D; Millard M; Neamati N
    Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling.
    Lee JS; Lee H; Jang H; Woo SM; Park JB; Lee SH; Kang JH; Kim HY; Song J; Kim SY
    Cells; 2020 Sep; 9(9):. PubMed ID: 32883024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer.
    Dekhne AS; Hou Z; Gangjee A; Matherly LH
    Mol Cancer Ther; 2020 Nov; 19(11):2245-2255. PubMed ID: 32879053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Transfer in Cancer: A Comprehensive Review.
    Zampieri LX; Silva-Almeida C; Rondeau JD; Sonveaux P
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD Metabolism in Cancer Therapeutics.
    Yaku K; Okabe K; Hikosaka K; Nakagawa T
    Front Oncol; 2018; 8():622. PubMed ID: 30631755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Therapeutic Targets in Energy Metabolism Pathways of Breast Cancer.
    Islam RA; Hossain S; Chowdhury EH
    Curr Cancer Drug Targets; 2017; 17(8):707-721. PubMed ID: 28359244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guaiazulene derivative 1,2,3,4-tetrahydroazuleno[1,2-b] tropone reduces the production of ATP by inhibiting electron transfer complex II.
    Kasami C; Yamaguchi JI; Inoue H
    FEBS Open Bio; 2021 Nov; 11(11):2921-2932. PubMed ID: 34061471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological Inhibitors of NAD Biosynthesis as Potential An ticancer Agents.
    Lucas S; Soave C; Nabil G; Ahmed ZSO; Chen G; El-Banna HA; Dou QP; Wang J
    Recent Pat Anticancer Drug Discov; 2017; 12(3):190-207. PubMed ID: 28637419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and Mitochondrial NAD Homeostasis in Health and Disease.
    Waddell J; Khatoon R; Kristian T
    Cells; 2023 May; 12(9):. PubMed ID: 37174729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity.
    Sun C; Liu X; Wang B; Wang Z; Liu Y; Di C; Si J; Li H; Wu Q; Xu D; Li J; Li G; Wang Y; Wang F; Zhang H
    Theranostics; 2019; 9(12):3595-3607. PubMed ID: 31281500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism.
    Porporato PE; Payen VL; Baselet B; Sonveaux P
    Cell Mol Life Sci; 2016 Apr; 73(7):1349-63. PubMed ID: 26646069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PGC1α regulates mitochondrial oxidative phosphorylation involved in cisplatin resistance in ovarian cancer cells via nucleo-mitochondrial transcriptional feedback.
    Shen L; Zhou L; Xia M; Lin N; Ma J; Dong D; Sun L
    Exp Cell Res; 2021 Jan; 398(1):112369. PubMed ID: 33220258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.