BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35366792)

  • 1. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    BMC Genomics; 2023 Oct; 24(1):614. PubMed ID: 37833630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology.
    Rodriguez S; Ward A; Reckard AT; Shtanko Y; Hull-Crew C; Klocko AD
    G3 (Bethesda); 2022 May; 12(5):. PubMed ID: 35244156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data.
    Kruse K; Hug CB; Vaquerizas JM
    Genome Biol; 2020 Dec; 21(1):303. PubMed ID: 33334380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CscoreTool: fast Hi-C compartment analysis at high resolution.
    Zheng X; Zheng Y
    Bioinformatics; 2018 May; 34(9):1568-1570. PubMed ID: 29244056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of using graph databases to explore chromatin conformation capture experiments.
    D'Agostino D; LiĆ² P; Aldinucci M; Merelli I
    BMC Bioinformatics; 2021 Apr; 22(Suppl 2):43. PubMed ID: 33902433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CscoreTool-M infers 3D sub-compartment probabilities within cell population.
    Zheng X; Tran JR; Zheng Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37166448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.
    Kobets VA; Ulianov SV; Galitsyna AA; Doronin SA; Mikhaleva EA; Gelfand MS; Shevelyov YY; Razin SV; Khrameeva EE
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36759336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data.
    Wang Z; Zhang Y; Zang C
    Bioinformatics; 2021 Sep; 37(18):3075-3078. PubMed ID: 33720325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of Chromosome Contact Maps: Matrix Balancing and Visualization.
    Matthey-Doret C; Baudry L; Mortaza S; Moreau P; Koszul R; Cournac A
    Methods Mol Biol; 2022; 2301():1-15. PubMed ID: 34415528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.