BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35367206)

  • 1. A catalytic dyad modulates conformational change in the CO
    Mattice JR; Shisler KA; DuBois JL; Peters JW; Bothner B
    J Biol Chem; 2022 May; 298(5):101884. PubMed ID: 35367206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of five catalytic activities associated with the NADPH:2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate] oxidoreductase/carboxylase of the Xanthobacter strain Py2 epoxide carboxylase system.
    Clark DD; Allen JR; Ensign SA
    Biochemistry; 2000 Feb; 39(6):1294-304. PubMed ID: 10684609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for CO2 fixation by a novel member of the disulfide oxidoreductase family of enzymes, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Nocek B; Jang SB; Jeong MS; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2002 Oct; 41(43):12907-13. PubMed ID: 12390015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.
    Kofoed MA; Wampler DA; Pandey AS; Peters JW; Ensign SA
    J Bacteriol; 2011 Sep; 193(18):4904-13. PubMed ID: 21764916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The unique Phe-His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S-C bond cleavage.
    Prussia GA; Shisler KA; Zadvornyy OA; Streit BR; DuBois JL; Peters JW
    J Biol Chem; 2021 Aug; 297(2):100961. PubMed ID: 34265301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic implications of the structure of the mixed-disulfide intermediate of the disulfide oxidoreductase, 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Pandey AS; Nocek B; Clark DD; Ensign SA; Peters JW
    Biochemistry; 2006 Jan; 45(1):113-20. PubMed ID: 16388586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reactive form of a C-S bond-cleaving, CO
    Streit BR; Mattice JR; Prussia GA; Peters JW; DuBois JL
    J Biol Chem; 2019 Mar; 294(13):5137-5145. PubMed ID: 30696768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substitution of a conserved catalytic dyad into 2-KPCC causes loss of carboxylation activity.
    Prussia GA; Gauss GH; Mus F; Conner L; DuBois JL; Peters JW
    FEBS Lett; 2016 Sep; 590(17):2991-6. PubMed ID: 27447465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for carbon dioxide binding by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.
    Pandey AS; Mulder DW; Ensign SA; Peters JW
    FEBS Lett; 2011 Feb; 585(3):459-64. PubMed ID: 21192936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray analysis of a NADPH 2-ketopropyl-coenzyme M oxidoreductase/carboxylase.
    Jang SB; Jeong MS; Clark DD; Ensign SA; Peters JW
    Acta Crystallogr D Biol Crystallogr; 2001 Mar; 57(Pt 3):445-7. PubMed ID: 11223527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inhibition of aliphatic epoxide carboxylation by the coenzyme M analog 2-bromoethanesulfonate.
    Boyd JM; Clark DD; Kofoed MA; Ensign SA
    J Biol Chem; 2010 Aug; 285(33):25232-42. PubMed ID: 20551308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of 2-bromoethanesulfonate as a selective inhibitor of the coenzyme m-dependent pathway and enzymes of bacterial aliphatic epoxide metabolism.
    Boyd JM; Ellsworth A; Ensign SA
    J Bacteriol; 2006 Dec; 188(23):8062-9. PubMed ID: 16997966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two short-chain dehydrogenases confer stereoselectivity for enantiomers of epoxypropane in the multiprotein epoxide carboxylating systems of Xanthobacter strain Py2 and Nocardia corallina B276.
    Allen JR; Ensign SA
    Biochemistry; 1999 Jan; 38(1):247-56. PubMed ID: 9890905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Dynamics of the Most Efficient Carboxylase Contributes to Efficient CO
    Gomez A; Erb TJ; Grubmüller H; Vöhringer-Martinez E
    J Chem Inf Model; 2023 Dec; 63(24):7807-7815. PubMed ID: 38049384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the unique carboxylation reactions in the metabolism of propylene and acetone.
    Mus F; Wu HH; Alleman AB; Shisler KA; Zadvornyy OA; Bothner B; Dubois JL; Peters JW
    Biochem J; 2020 Jun; 477(11):2027-2038. PubMed ID: 32497192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.
    Sluis MK; Small FJ; Allen JR; Ensign SA
    J Bacteriol; 1996 Jul; 178(14):4020-6. PubMed ID: 8763926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptoethanesulfonate) biosynthesis in Xanthobacter strain Py2.
    Krum JG; Ensign SA
    J Bacteriol; 2001 Apr; 183(7):2172-7. PubMed ID: 11244054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aliphatic epoxide carboxylation.
    Ensign SA; Allen JR
    Annu Rev Biochem; 2003; 72():55-76. PubMed ID: 12524213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of S-HPCDH reveal determinants of stereospecificity for R- and S-hydroxypropyl-coenzyme M dehydrogenases.
    Bakelar JW; Sliwa DA; Johnson SJ
    Arch Biochem Biophys; 2013 May; 533(1-2):62-8. PubMed ID: 23474457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.