BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35367210)

  • 1. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features and substrate engagement in peptide-modifying radical SAM enzymes.
    Cheek LE; Zhu W
    Arch Biochem Biophys; 2024 Jun; 756():110012. PubMed ID: 38663796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How a Subfamily of Radical S-Adenosylmethionine Enzymes Became a Mainstay of Ribosomally Synthesized and Post-translationally Modified Peptide Discovery.
    Mendauletova A; Kostenko A; Lien Y; Latham J
    ACS Bio Med Chem Au; 2022 Feb; 2(1):53-59. PubMed ID: 37102180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases.
    Lien Y; Lachowicz JC; Mendauletova A; Zizola C; Ngendahimana T; Kostenko A; Eaton SS; Latham JA; Grove TL
    ACS Chem Biol; 2024 Feb; 19(2):370-379. PubMed ID: 38295270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
    Grove TL; Himes PM; Hwang S; Yumerefendi H; Bonanno JB; Kuhlman B; Almo SC; Bowers AA
    J Am Chem Soc; 2017 Aug; 139(34):11734-11744. PubMed ID: 28704043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the Landscape of Noncanonical Amino Acids in RiPP Biosynthesis.
    Johnson BA; Clark KA; Bushin LB; Spolar CN; Seyedsayamdost MR
    J Am Chem Soc; 2024 Feb; 146(6):3805-3815. PubMed ID: 38316431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes.
    Balty C; Guillot A; Fradale L; Brewee C; Lefranc B; Herrero C; Sandström C; Leprince J; Berteau O; Benjdia A
    J Biol Chem; 2020 Dec; 295(49):16665-16677. PubMed ID: 32972973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrocyclization via an Arginine-Tyrosine Crosslink Broadens the Reaction Scope of Radical
    Caruso A; Martinie RJ; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Oct; 141(42):16610-16614. PubMed ID: 31596076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical Approach to Enzymatic β-Thioether Bond Formation.
    Caruso A; Bushin LB; Clark KA; Martinie RJ; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jan; 141(2):990-997. PubMed ID: 30521328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Site Proximity Profiling for Functional Unification of Sequence-Diverse Radical
    Precord TW; Ramesh S; Dommaraju SR; Harris LA; Kille BL; Mitchell DA
    ACS Bio Med Chem Au; 2023 Jun; 3(3):240-251. PubMed ID: 37363077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical SAM-dependent ether crosslink in daropeptide biosynthesis.
    Guo S; Wang S; Ma S; Deng Z; Ding W; Zhang Q
    Nat Commun; 2022 Apr; 13(1):2361. PubMed ID: 35487921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
    Davis KM; Schramma KR; Hansen WA; Bacik JP; Khare SD; Seyedsayamdost MR; Ando N
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10420-10425. PubMed ID: 28893989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.