BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35367268)

  • 1. Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications.
    Yu M; Guo Y; Wang X; Zhu H; Li W; Zhou J
    Int J Biol Macromol; 2022 May; 208():782-793. PubMed ID: 35367268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Functionalization Integration into the Electrospun Nanofibers Exhibiting Effective Iodine Capture from Water.
    Chen D; Ma T; Zhao X; Jing X; Zhao R; Zhu G
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47126-47135. PubMed ID: 36202176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel.
    Wang X; Meng R; Zhao S; Jing Z; Jin Y; Zhang J; Pi X; Du Q; Chen L; Li Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129690. PubMed ID: 38266855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification.
    Zhang W; Yang P; Li X; Zhu Z; Chen M; Zhou X
    Int J Biol Macromol; 2019 Dec; 141():747-755. PubMed ID: 31470056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.
    Mu W; Li X; Liu G; Yu Q; Xie X; Wei H; Jian Y
    Dalton Trans; 2016 Jan; 45(2):753-9. PubMed ID: 26631449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy to combine two functional components: Efficient nano material development for iodine immobilization.
    Han Z; Lu Y; Li Y; Wu R; Huang Z
    Chemosphere; 2022 Dec; 309(Pt 1):136477. PubMed ID: 36162517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Protonated Two-Dimensional Metal-Organic Framework Nanosheets for Highly Efficient Iodine Capture from Water.
    Yu CX; Li XJ; Zong JS; You DJ; Liang AP; Zhou YL; Li XQ; Liu LL
    Inorg Chem; 2022 Sep; 61(35):13883-13892. PubMed ID: 35998569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.
    Yang D; Liu H; Liu L; Sarina S; Zheng Z; Zhu H
    Nanoscale; 2013 Nov; 5(22):11011-8. PubMed ID: 24068160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient capture of radioactive iodine by ZIF-8 derived porous carbon.
    Liu S; Zeng Y; Zhang A; Song Y; Ni Y; Li J; Chi F; Xiao C
    J Environ Radioact; 2022 Aug; 249():106895. PubMed ID: 35594799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun Polyacrylonitrile/Lignin/Poly(Ethylene Glycol)-Based Porous Activated Carbon Nanofiber for Removal of Nickel(II) Ion from Aqueous Solution.
    Zakaria AF; Kamaruzaman S; Abdul Rahman N
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study.
    Yang J; Tai W; Wu F; Shi K; Jia T; Su Y; Liu T; Mocilac P; Hou X; Chen X
    Chemosphere; 2022 Apr; 292():133401. PubMed ID: 34953880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Removal of Pb(II) Ions by Electrospun PAN/Sago Lignin-based Activated Carbon Nanofibers.
    Nordin NA; Abdul Rahman N; Abdullah AH
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32640766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture.
    Tian P; Ai Z; Hu H; Wang M; Li Y; Gao X; Qian J; Su X; Xiao S; Xu H; Lu F; Gao Y
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and scalable preparation of lignin based porous carbon coated nano-clay composites and their efficient removal for the diversified iodine.
    Wan H; Liu D; Shao L; Sheng Z; Liu N; Wu Z; Luo W; Zhan P; Zhang L
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132091. PubMed ID: 38718990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective removal of radioactive iodine from water using reusable Fe@Pt adsorbents.
    Jeong H; Lee DW; Hong SJ; Kim J; Kim M; Kim J; Lee HS; Park TH; Kim HK; Park JI; Kim JY; Lim SH; Hyeon T; Han B; Bae SE
    Water Res; 2022 Aug; 222():118864. PubMed ID: 35870393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of electrospun lignin nanofibers for the adsorption of pharmaceutical contaminants in wastewater.
    Camiré A; Espinasse J; Chabot B; Lajeunesse A
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):3560-3573. PubMed ID: 30341756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of oxygen-rich porous polymer microspheres from lignin-derived phenols for selective CO
    Shao L; Liu N; Wang L; Sang Y; Wan H; Zhan P; Zhang L; Huang J; Chen J
    Chemosphere; 2022 Feb; 288(Pt 1):132499. PubMed ID: 34626649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of Nanofibrillated Chitin/Ag
    Gao R; Lu Y; Xiao S; Li J
    Sci Rep; 2017 Jun; 7(1):4303. PubMed ID: 28655919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable wastewater treatment by deep eutectic solvents and natural silk for radioactive iodine capture.
    Fu L; Hu X; Yu S; Guo Y; Liu H; Zhang W; Lou Y; Li D; Yu Q
    Water Sci Technol; 2019 Nov; 80(9):1683-1691. PubMed ID: 32039900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated adsorption of iodine by an amino-metal-organic framework modified with covalent bonds.
    Wang Y; Chen Y; Zhao M; Zhang L; Zhou C; Wang H
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):88882-88893. PubMed ID: 35841504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.