These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 35367673)
21. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China. Liu X; Wang S; Xue H; Singh VP PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928 [TBL] [Abstract][Full Text] [Related]
22. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Cochand F; Brunner P; Hunkeler D; Rössler O; Holzkämper A Sci Total Environ; 2021 Dec; 798():148759. PubMed ID: 34332390 [TBL] [Abstract][Full Text] [Related]
23. Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, China. Zhang J; Dong Z; Chen T Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322554 [TBL] [Abstract][Full Text] [Related]
24. Agricultural Water Resources Management Using Maximum Entropy and Entropy-Weight-Based TOPSIS Methods. Li M; Sun H; Singh VP; Zhou Y; Ma M Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267078 [TBL] [Abstract][Full Text] [Related]
25. A stochastic modeling approach for analyzing water resources systems. Li Y; Cai Y; Fu Q; Wang X; Li C; Liu Q; Xu R J Contam Hydrol; 2021 Oct; 242():103865. PubMed ID: 34450526 [TBL] [Abstract][Full Text] [Related]
26. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Elliott J; Deryng D; Müller C; Frieler K; Konzmann M; Gerten D; Glotter M; Flörke M; Wada Y; Best N; Eisner S; Fekete BM; Folberth C; Foster I; Gosling SN; Haddeland I; Khabarov N; Ludwig F; Masaki Y; Olin S; Rosenzweig C; Ruane AC; Satoh Y; Schmid E; Stacke T; Tang Q; Wisser D Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3239-44. PubMed ID: 24344283 [TBL] [Abstract][Full Text] [Related]
27. A Copula-based interval linear programming model for water resources allocation under uncertainty. Yue W; Yu S; Xu M; Rong Q; Xu C; Su M J Environ Manage; 2022 Sep; 317():115318. PubMed ID: 35623131 [TBL] [Abstract][Full Text] [Related]
28. Planning for agricultural return flow allocation: application of info-gap decision theory and a nonlinear CVaR-based optimization model. Soltani M; Kerachian R; Nikoo MR; Noory H Environ Sci Pollut Res Int; 2018 Sep; 25(25):25115-25129. PubMed ID: 29938383 [TBL] [Abstract][Full Text] [Related]
29. An Inexact Optimization Model for Crop Area Under Multiple Uncertainties. Ren C; Zhang H Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31336673 [TBL] [Abstract][Full Text] [Related]
30. An inexact two-stage stochastic programming model for water resources management in Nansihu Lake Basin, China. Xie YL; Huang GH; Li W; Li JB; Li YF J Environ Manage; 2013 Sep; 127():188-205. PubMed ID: 23712035 [TBL] [Abstract][Full Text] [Related]
31. Balancing water resource conservation and food security in China. Dalin C; Qiu H; Hanasaki N; Mauzerall DL; Rodriguez-Iturbe I Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4588-93. PubMed ID: 25825748 [TBL] [Abstract][Full Text] [Related]
32. Optimization of water and land allocation in salinity and deficit- irrigation conditions at farm level in Qazvin plain. Bulukazari S; Babazadeh H; Ebrahimipak N; Mousavi-Jahromi SH; Ramezani Etedali H PLoS One; 2022; 17(7):e0269663. PubMed ID: 35802636 [TBL] [Abstract][Full Text] [Related]
33. Tech-economic modeling and analysis of agricultural photovoltaic-water systems for irrigation in arid areas. Yan Y; Wang Y; Yan J; Liu Z; Liao Q; Wang B J Environ Manage; 2023 Jul; 338():117858. PubMed ID: 37023610 [TBL] [Abstract][Full Text] [Related]
34. A multi-objective mathematical model of a water management problem with environmental impacts: An application in an irrigation project. Ullah GMW; Nehring M PLoS One; 2021; 16(8):e0255441. PubMed ID: 34343172 [TBL] [Abstract][Full Text] [Related]
35. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010. Liu J; Sun S; Wu P; Wang Y; Zhao X Sci Total Environ; 2015 Feb; 505():1174-81. PubMed ID: 25461115 [TBL] [Abstract][Full Text] [Related]
37. Water resource use and driving forces analysis for crop production in China coupling irrigation and water footprint paradigms. Zeng W; Cao X; Huang X; Wu M Environ Sci Pollut Res Int; 2022 May; 29(24):36133-36146. PubMed ID: 35064504 [TBL] [Abstract][Full Text] [Related]
38. Different policies constrained agricultural non-point pollutants emission trading management for water system under interval, fuzzy, and stochastic information. Xie Y; Lu H; Luo Z; Ji L; Zhai L; Cai Y Environ Res; 2024 May; 248():117809. PubMed ID: 38072114 [TBL] [Abstract][Full Text] [Related]
39. Effect of an improved agricultural irrigation scheme with a hydraulic structure for crop cultivation in arid northern Afghanistan using the Soil and Water Assessment Tool (SWAT). Hussainzada W; Lee HS Sci Rep; 2022 Mar; 12(1):5186. PubMed ID: 35338227 [TBL] [Abstract][Full Text] [Related]
40. A dual-randomness bi-level interval multi-objective programming model for regional water resources management. Xiao J; Cai Y; He Y; Xie Y; Yang Z J Contam Hydrol; 2021 Aug; 241():103816. PubMed ID: 33965809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]