These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35367812)

  • 21. Hemispheric differences in strong versus weak semantic priming: evidence from event-related brain potentials.
    Frishkoff GA
    Brain Lang; 2007 Jan; 100(1):23-43. PubMed ID: 16908058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ERP indicators of L2 proficiency in word-to-text integration processes.
    Yang CL; Perfetti CA; Tan LH; Jiang Y
    Neuropsychologia; 2018 Aug; 117():287-301. PubMed ID: 29879422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perturbation of old knowledge precedes integration of new knowledge.
    Fang X; Perfetti CA
    Neuropsychologia; 2017 May; 99():270-278. PubMed ID: 28315367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Neural Underpinnings of Processing Newly Taught Semantic Information: The Role of Retrieval Practice.
    Haebig E; Leonard LB; Deevy P; Schumaker J; Karpicke JD; Weber C
    J Speech Lang Hear Res; 2021 Aug; 64(8):3195-3211. PubMed ID: 34351812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-situational and ostensive word learning in children with and without autism spectrum disorder.
    Venker CE
    Cognition; 2019 Feb; 183():181-191. PubMed ID: 30468980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Explicit and implicit memory representations in cross-situational word learning.
    Wang FH
    Cognition; 2020 Dec; 205():104444. PubMed ID: 33075677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strength of Temporal White Matter Pathways Predicts Semantic Learning.
    Ripollés P; Biel D; Peñaloza C; Kaufmann J; Marco-Pallarés J; Noesselt T; Rodríguez-Fornells A
    J Neurosci; 2017 Nov; 37(46):11101-11113. PubMed ID: 29025925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of context, meaning frequency, and associative strength on semantic selection: distinct contributions from each cerebral hemisphere.
    Meyer AM; Federmeier KD
    Brain Res; 2007 Dec; 1183():91-108. PubMed ID: 17936727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid acquisition of novel written word-forms: ERP evidence.
    Bermúdez-Margaretto B; Shtyrov Y; Beltrán D; Cuetos F; Domínguez A
    Behav Brain Funct; 2020 Dec; 16(1):11. PubMed ID: 33267883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explicit encoding vs. fast mapping of novel spoken words: Electrophysiological and behavioural evidence of diverging mechanisms.
    Shtyrov Y; Filippova M; Perikova E; Kirsanov A; Shcherbakova O; Blagovechtchenski E
    Neuropsychologia; 2022 Jul; 172():108268. PubMed ID: 35569563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interplay between domain-general and domain-specific mechanisms during the time-course of verbal associative learning: An event-related potential study.
    Ramos-Escobar N; Laine M; Sanseverino-Dillenburg M; Cucurell D; François C; Rodriguez-Fornells A
    Neuroimage; 2021 Nov; 242():118443. PubMed ID: 34352392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of increased working memory load on semantic neural systems: a high-resolution event-related brain potential study.
    D'Arcy RC; Service E; Connolly JF; Hawco CS
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):177-91. PubMed ID: 15653292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Word meaning acquisition is reflected in brain potentials of isolated words.
    Kuipers JR; Uminski A; Green Z; Hughes D; Aglietti T
    Sci Rep; 2017 Mar; 7():43341. PubMed ID: 28256517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual Event-Related Potentials to Novel Objects Predict Rapid Word Learning Ability in 20-Month-Olds.
    Borgström K; Torkildsen JV; Lindgren M
    Dev Neuropsychol; 2016; 41(5-8):308-323. PubMed ID: 28059564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Professional Music Training and Novel Word Learning: From Faster Semantic Encoding to Longer-lasting Word Representations.
    Dittinger E; Barbaroux M; D'Imperio M; Jäncke L; Elmer S; Besson M
    J Cogn Neurosci; 2016 Oct; 28(10):1584-602. PubMed ID: 27315272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of attention and semantic relation on event-related potentials in a picture-word naming task.
    Greenham SL; Stelmack RM; Campbell KB
    Biol Psychol; 2000 Dec; 55(2):79-104. PubMed ID: 11118677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining statistics: the role of phonotactics on cross-situational word learning.
    Dal Ben R; Souza DH; Hay JF
    Psicol Reflex Crit; 2022 Sep; 35(1):30. PubMed ID: 36169750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semantic advantage for learning new phonological form representations.
    Hawkins E; Astle DE; Rastle K
    J Cogn Neurosci; 2015 Apr; 27(4):775-86. PubMed ID: 25269110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating Implicit and Explicit Word Learning in School-age Children Using a Combined Behavioral-Event Related Potential (ERP) Approach.
    Abel AD; Sharp BJ; Konja C
    Dev Neuropsychol; 2020; 45(1):27-38. PubMed ID: 31893945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Being suspicious of suspicious coincidences: The case of learning subordinate word meanings.
    Wang FH; Trueswell J
    Cognition; 2022 Jul; 224():105028. PubMed ID: 35257979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.