These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35367900)

  • 1. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM.
    Dickerson JL; Lu PH; Hristov D; Dunin-Borkowski RE; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113510. PubMed ID: 35367900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens.
    Rez P; Larsen T; Elbaum M
    J Struct Biol; 2016 Dec; 196(3):466-478. PubMed ID: 27678408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase contrast imaging with inelastically scattered electrons from any layer of a thick specimen.
    Dickerson JL; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113511. PubMed ID: 35367902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The energy dependence of contrast and damage in electron cryomicroscopy of biological molecules.
    Peet MJ; Henderson R; Russo CJ
    Ultramicroscopy; 2019 Aug; 203():125-131. PubMed ID: 30773415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging.
    Han KF; Gubbens AJ; Sedat JW; Agard DA
    J Microsc; 1996 Aug; 183(Pt 2):124-32. PubMed ID: 8805824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryomicroscopy
    Russo CJ; Dickerson JL; Naydenova K
    Faraday Discuss; 2022 Nov; 240(0):277-302. PubMed ID: 35913392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thick specimens in the CEM and STEM. Resolution and image formation.
    Groves T
    Ultramicroscopy; 1975 Jul; 1(1):15-31. PubMed ID: 1236017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging.
    Han KF; Sedat JW; Agard DA
    J Microsc; 1995 May; 178(Pt 2):107-19. PubMed ID: 7783184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manual Blot-and-Plunge Freezing of Biological Specimens for Single-Particle Cryogenic Electron Microscopy.
    Nguyen HPM; McGuire KL; Cook BD; Herzik MA
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement.
    Bouwer JC; Mackey MR; Lawrence A; Deerinck TJ; Jones YZ; Terada M; Martone ME; Peltier S; Ellisman MH
    J Struct Biol; 2004 Dec; 148(3):297-306. PubMed ID: 15522778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections.
    Sousa AA; Hohmann-Marriott MF; Zhang G; Leapman RD
    Ultramicroscopy; 2009 Feb; 109(3):213-21. PubMed ID: 19110374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choice of operating voltage for a transmission electron microscope.
    Egerton RF
    Ultramicroscopy; 2014 Oct; 145():85-93. PubMed ID: 24679438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superposition of chromatic error and beam broadening in transmission electron microscopy of thick carbon and organic specimens.
    Reimer L; Gentsch P
    Ultramicroscopy; 1975 Jul; 1(1):1-5. PubMed ID: 1236016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: elastic scattering.
    Cosgriff EC; D'Alfonso AJ; Allen LJ; Findlay SD; Kirkland AI; Nellist PD
    Ultramicroscopy; 2008 Nov; 108(12):1558-66. PubMed ID: 18639381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation damage in electron cryomicroscopy.
    Baker LA; Rubinstein JL
    Methods Enzymol; 2010; 481():371-88. PubMed ID: 20887865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy.
    Han KF; Sedat JW; Agard DA
    J Struct Biol; 1997 Dec; 120(3):237-44. PubMed ID: 9441929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose phase retrieval of biological specimens using cryo-electron ptychography.
    Zhou L; Song J; Kim JS; Pei X; Huang C; Boyce M; Mendonça L; Clare D; Siebert A; Allen CS; Liberti E; Stuart D; Pan X; Nellist PD; Zhang P; Kirkland AI; Wang P
    Nat Commun; 2020 Jun; 11(1):2773. PubMed ID: 32487987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future trends in aberration-corrected electron microscopy.
    Rose HH
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1903):3809-23. PubMed ID: 19687067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D electron microscopy: principles and applications.
    Flannigan DJ; Zewail AH
    Acc Chem Res; 2012 Oct; 45(10):1828-39. PubMed ID: 22967215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CryoEM: a crystals to single particles round-trip.
    Hebert H
    Curr Opin Struct Biol; 2019 Oct; 58():59-67. PubMed ID: 31233976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.