BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35368033)

  • 1. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors.
    Zhou J; Al Husseini D; Li J; Lin Z; Sukhishvili S; Coté GL; Gutierrez-Osuna R; Lin PT
    Sci Rep; 2022 Apr; 12(1):5572. PubMed ID: 35368033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.
    Lin PT; Singh V; Hu J; Richardson K; Musgraves JD; Luzinov I; Hensley J; Kimerling LC; Agarwal A
    Lab Chip; 2013 Jun; 13(11):2161-6. PubMed ID: 23620303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides.
    Lin PT; Giammarco J; Borodinov N; Savchak M; Singh V; Kimerling LC; Tan DT; Richardson KA; Luzinov I; Agarwal A
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11189-94. PubMed ID: 25924561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-Infrared Serial Microring Resonator Array for Real-Time Detection of Vapor-Phase Volatile Organic Compounds.
    Zhou J; Husseini DA; Li J; Lin Z; Sukhishvili S; Coté GL; Gutierrez-Osuna R; Lin PT
    Anal Chem; 2022 Aug; 94(31):11008-11015. PubMed ID: 35912577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Silicon Nitride Waveguide Platform for On-Chip Virus Detection.
    El Shamy RS; Swillam MA; Li X
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection.
    Jin T; Zhou J; Lin HG; Lin PT
    Anal Chem; 2019 Jan; 91(1):817-822. PubMed ID: 30516952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time and Label-Free Chemical Sensor-on-a-chip using Monolithic Si-on-BaTiO
    Jin T; Li L; Zhang B; Lin HG; Wang H; Lin PT
    Sci Rep; 2017 Jul; 7(1):5836. PubMed ID: 28724901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolithically Integrated Si-on-AlN Mid-Infrared Photonic Chips for Real-Time and Label-Free Chemical Sensing.
    Jin T; Lin HG; Lin PT
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42905-42911. PubMed ID: 29171251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared materials and devices on a Si platform for optical sensing.
    Singh V; Lin PT; Patel N; Lin H; Li L; Zou Y; Deng F; Ni C; Hu J; Giammarco J; Soliani AP; Zdyrko B; Luzinov I; Novak S; Novak J; Wachtel P; Danto S; Musgraves JD; Richardson K; Kimerling LC; Agarwal AM
    Sci Technol Adv Mater; 2014 Feb; 15(1):014603. PubMed ID: 27877641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mid-infrared frequency doubling using strip-loaded silicon nitride on epitaxial barium titanate thin film waveguides.
    Zhou J; Liu M; Lu M; Lin PT
    Opt Lett; 2020 Dec; 45(23):6358-6361. PubMed ID: 33258811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip integration of a metal-organic framework nanomaterial on a SiO
    Ma X; Wu J; Jiang L; Wang M; Deng G; Qu S; Chen K
    Lab Chip; 2021 Sep; 21(17):3298-3306. PubMed ID: 34378614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury-cadmium-telluride waveguides--a novel strategy for on-chip mid-infrared sensors.
    Wang X; Antoszewski J; Putrino G; Lei W; Faraone L; Mizaikoff B
    Anal Chem; 2013 Nov; 85(22):10648-52. PubMed ID: 24160678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic Mid-Infrared Integrated Photonics Using Silicon-on-Epitaxial Barium Titanate Thin Films.
    Jin T; Li L; Zhang B; Lin HG; Wang H; Lin PT
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21848-21855. PubMed ID: 28580780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High sensitivity infrared spectroscopy with a diamond waveguide on aluminium nitride.
    Forsberg P; Hollman P; Karlsson M
    Analyst; 2021 Nov; 146(22):6981-6989. PubMed ID: 34661204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers.
    Wang X; Kim SS; Rossbach R; Jetter M; Michler P; Mizaikoff B
    Analyst; 2012 May; 137(10):2322-7. PubMed ID: 22249166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-IR evanescent-field fiber sensor with enhanced sensitivity for volatile organic compounds.
    Alimagham F; Platkov M; Prestage J; Basov S; Izakson G; Katzir A; Elliott SR; Hutter T
    RSC Adv; 2019 Jul; 9(37):21186-21191. PubMed ID: 35521343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Si Nanostrip Optical Waveguide for On-Chip Broadband Molecular Overtone Spectroscopy in Near-Infrared.
    Katiyi A; Karabchevsky A
    ACS Sens; 2018 Mar; 3(3):618-623. PubMed ID: 29436815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy.
    Liu W; Ma Y; Liu X; Zhou J; Xu C; Dong B; Lee C
    Nano Lett; 2022 Aug; 22(15):6112-6120. PubMed ID: 35759415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamonds are a spectroscopist's best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors.
    Wang X; Karlsson M; Forsberg P; Sieger M; Nikolajeff F; Österlund L; Mizaikoff B
    Anal Chem; 2014 Aug; 86(16):8136-41. PubMed ID: 25032789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward the Required Detection Limits for Volatile Organic Constituents in Marine Environments with Infrared Evanescent Field Chemical Sensors.
    Dettenrieder C; Raichlin Y; Katzir A; Mizaikoff B
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.