These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35368131)

  • 21. Optimal sampling design for spatial capture-recapture.
    Dupont G; Royle JA; Nawaz MA; Sutherland C
    Ecology; 2021 Mar; 102(3):e03262. PubMed ID: 33244753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.
    Boulanger J; Kendall KC; Stetz JB; Roon DA; Waits LP; Paetkau D
    Ecol Appl; 2008 Apr; 18(3):577-89. PubMed ID: 18488618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occupancy data improves parameter precision in spatial capture-recapture models.
    Jiménez J; Díaz-Ruiz F; Monterroso P; Tobajas J; Ferreras P
    Ecol Evol; 2022 Aug; 12(8):e9250. PubMed ID: 36052294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Testing the precision and sensitivity of density estimates obtained with a camera-trap method revealed limitations and opportunities.
    Pettigrew P; Sigouin D; St-Laurent MH
    Ecol Evol; 2021 Jun; 11(12):7879-7889. PubMed ID: 34188858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating multiple years, tributary-specific, and overall Atlantic salmon smolt abundance in a large Canadian catchment using capture-mark-recapture experiments.
    Dauphin GJR; Gillis CA; Chaput GJ
    J Fish Biol; 2024 Mar; 104(3):681-697. PubMed ID: 37837280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensatory heterogeneity in spatially explicit capture-recapture data.
    Efford MG; Mowat G
    Ecology; 2014 May; 95(5):1341-8. PubMed ID: 25000765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.
    Boulanger J; Nielsen SE; Stenhouse GB
    Sci Rep; 2018 Mar; 8(1):5204. PubMed ID: 29581471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A spatial capture-recapture model for group-living species.
    Emmet RL; Augustine BC; Abrahms B; Rich LN; Gardner B
    Ecology; 2022 Oct; 103(10):e3576. PubMed ID: 34714927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data.
    Dorazio RM
    PLoS One; 2013; 8(12):e84017. PubMed ID: 24386325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical models for estimating density from DNA mark-recapture studies.
    Gardner B; Royle JA; Wegan MT
    Ecology; 2009 Apr; 90(4):1106-15. PubMed ID: 19449704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Land tenure shapes black bear density and abundance on a multi-use landscape.
    Loosen AE; Morehouse AT; Boyce MS
    Ecol Evol; 2019 Jan; 9(1):73-89. PubMed ID: 30680097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Confronting spatial capture-recapture models with realistic animal movement simulations.
    Theng M; Milleret C; Bracis C; Cassey P; Delean S
    Ecology; 2022 Oct; 103(10):e3676. PubMed ID: 35253209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pairing field methods to improve inference in wildlife surveys while accommodating detection covariance.
    Clare J; McKinney ST; DePue JE; Loftin CS
    Ecol Appl; 2017 Oct; 27(7):2031-2047. PubMed ID: 28644579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders.
    Dorazio RM; Karanth KU
    PLoS One; 2017; 12(5):e0176966. PubMed ID: 28520796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consequences of severe habitat fragmentation on density, genetics, and spatial capture-recapture analysis of a small bear population.
    Murphy SM; Augustine BC; Ulrey WA; Guthrie JM; Scheick BK; McCown JW; Cox JJ
    PLoS One; 2017; 12(7):e0181849. PubMed ID: 28738077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial capture-recapture design and modelling for the study of small mammals.
    Romairone J; Jiménez J; Luque-Larena JJ; Mougeot F
    PLoS One; 2018; 13(6):e0198766. PubMed ID: 29879211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abundance estimation for line transect sampling: A comparison of distance sampling and spatial capture-recapture models.
    Crum NJ; Neyman LC; Gowan TA
    PLoS One; 2021; 16(5):e0252231. PubMed ID: 34048456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bayesian state-space model using age-at-harvest data for estimating the population of black bears (Ursus americanus) in Wisconsin.
    Allen ML; Norton AS; Stauffer G; Roberts NM; Luo Y; Li Q; MacFarland D; Van Deelen TR
    Sci Rep; 2018 Aug; 8(1):12440. PubMed ID: 30127405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.
    Sawaya MA; Stetz JB; Clevenger AP; Gibeau ML; Kalinowski ST
    PLoS One; 2012; 7(5):e34777. PubMed ID: 22567089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-structured Jolly-Seber model expands inference and improves parameter estimation from capture-recapture data.
    Hostetter NJ; Lunn NJ; Richardson ES; Regehr EV; Converse SJ
    PLoS One; 2021; 16(6):e0252748. PubMed ID: 34106979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.