These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 3536874)
1. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. Beever RE; Laracy EP J Bacteriol; 1986 Dec; 168(3):1358-65. PubMed ID: 3536874 [TBL] [Abstract][Full Text] [Related]
2. Solute stresses affect growth patterns, endogenous water potentials and accumulation of sugars and sugar alcohols in cells of the biocontrol yeast Candida sake. Abadias M; Teixidó N; Usall J; Viñas I; Magan N J Appl Microbiol; 2000 Dec; 89(6):1009-17. PubMed ID: 11123474 [TBL] [Abstract][Full Text] [Related]
3. Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. de Vries RP; Flitter SJ; van de Vondervoort PJ; Chaveroche MK; Fontaine T; Fillinger S; Ruijter GJ; d'Enfert C; Visser J Mol Microbiol; 2003 Jul; 49(1):131-41. PubMed ID: 12823816 [TBL] [Abstract][Full Text] [Related]
4. Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. de Lima Alves F; Stevenson A; Baxter E; Gillion JL; Hejazi F; Hayes S; Morrison IE; Prior BA; McGenity TJ; Rangel DE; Magan N; Timmis KN; Hallsworth JE Curr Genet; 2015 Aug; 61(3):457-77. PubMed ID: 26055444 [TBL] [Abstract][Full Text] [Related]
5. Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. Nesci A; Etcheverry M; Magan N J Appl Microbiol; 2004; 96(5):965-72. PubMed ID: 15078512 [TBL] [Abstract][Full Text] [Related]
6. Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. Hallsworth JE; Prior BA; Nomura Y; Iwahara M; Timmis KN Appl Environ Microbiol; 2003 Dec; 69(12):7032-4. PubMed ID: 14660346 [TBL] [Abstract][Full Text] [Related]
7. The fungal STRE-element-binding protein Seb1 is involved but not essential for glycerol dehydrogenase (gld1) gene expression and glycerol accumulation in Trichoderma atroviride during osmotic stress. Seidl V; Seiboth B; Karaffa L; Kubicek CP Fungal Genet Biol; 2004 Dec; 41(12):1132-40. PubMed ID: 15531216 [TBL] [Abstract][Full Text] [Related]
8. Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum. Ramirez ML; Chulze SN; Magan N Mycologia; 2004; 96(3):470-8. PubMed ID: 21148870 [TBL] [Abstract][Full Text] [Related]
9. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Kogej T; Stein M; Volkmann M; Gorbushina AA; Galinski EA; Gunde-Cimerman N Microbiology (Reading); 2007 Dec; 153(Pt 12):4261-4273. PubMed ID: 18048939 [TBL] [Abstract][Full Text] [Related]
10. A novel osmotic pressure strategy to improve erythritol production by Yarrowia lipolytica from glycerol. da Silva LV; Coelho MAZ; Amaral PFF; Fickers P Bioprocess Biosyst Eng; 2018 Dec; 41(12):1883-1886. PubMed ID: 30145741 [TBL] [Abstract][Full Text] [Related]
11. Impact of Temperature, Osmotic Potential, and Osmoregulant on the Growth of Three Ectotrophic Root-Infecting Fungi of Kentucky Bluegrass. Plumley KA; Gould AB; Clarke BB Plant Dis; 1997 Aug; 81(8):873-879. PubMed ID: 30866373 [TBL] [Abstract][Full Text] [Related]
12. Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii. Yagi T Microbios; 1992; 70(283):93-102. PubMed ID: 1501597 [TBL] [Abstract][Full Text] [Related]
13. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. Nevoigt E; Stahl U FEMS Microbiol Rev; 1997 Nov; 21(3):231-41. PubMed ID: 9451815 [TBL] [Abstract][Full Text] [Related]
14. Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis. Kobayashi Y; Iwata H; Yoshida J; Ogihara J; Kato J; Kasumi T J Biosci Bioeng; 2015 Oct; 120(4):405-10. PubMed ID: 25795573 [TBL] [Abstract][Full Text] [Related]
15. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol. Yang LB; Zhan XB; Zhu L; Gao MJ; Lin CC Prep Biochem Biotechnol; 2016 May; 46(4):376-83. PubMed ID: 26176584 [TBL] [Abstract][Full Text] [Related]
16. HOG-Independent Osmoprotection by Erythritol in Yeast Rzechonek DA; Szczepańczyk M; Wang G; Borodina I; Mirończuk AM Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261148 [TBL] [Abstract][Full Text] [Related]
17. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Zajc J; Kogej T; Galinski EA; Ramos J; Gunde-Cimerman N Appl Environ Microbiol; 2014 Jan; 80(1):247-56. PubMed ID: 24162565 [TBL] [Abstract][Full Text] [Related]
18. Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans. Redkar RJ; Locy RD; Singh NK Exp Mycol; 1995 Dec; 19(4):241-6. PubMed ID: 8574901 [TBL] [Abstract][Full Text] [Related]
19. The soluble carbohydrates of Aspergillus clavatus. Holligan PM; Lewis DH J Gen Microbiol; 1973 Mar; 75(1):155-9. PubMed ID: 4722561 [No Abstract] [Full Text] [Related]
20. Protoplasts from Aspergillus nidulans. van den Broek WJ; Stunnenberg HG; Wennekes LM Microbios; 1979; 26(104):115-28. PubMed ID: 399317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]