These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3536918)

  • 61. Fluorescent modification of the cysteine 202 residue of Escherichia coli transcription termination factor rho.
    Seifried SE; Wang Y; von Hippel PH
    J Biol Chem; 1988 Sep; 263(27):13511-4. PubMed ID: 2458348
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A mutation in the ATP binding domain of rho alters its RNA binding properties and uncouples ATP hydrolysis from helicase activity.
    Pereira S; Platt T
    J Biol Chem; 1995 Dec; 270(51):30401-7. PubMed ID: 8530466
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature-sensitive mutant rho-115 rho-RNA binary complexes, and stabilization by substrates and analogues.
    Kent RB; Guterman SK
    Mol Gen Genet; 1982; 187(2):330-4. PubMed ID: 6217399
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stereochemistry of metal ion coordination to the terminal thiophosphoryl group of adenosine 5'-O-(3-thiotriphosphate) at the active site of pyruvate kinase.
    Buchbinder JL; Baraniak J; Frey PA; Reed GH
    Biochemistry; 1993 Dec; 32(51):14111-6. PubMed ID: 8260493
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA.
    Bertram JG; Bloom LB; Hingorani MM; Beechem JM; O'Donnell M; Goodman MF
    J Biol Chem; 2000 Sep; 275(37):28413-20. PubMed ID: 10874049
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of an RNA-binding Site in the ATP binding domain of Escherichia coli Rho by H2O2/Fe-EDTA cleavage protection studies.
    Wei RR; Richardson JP
    J Biol Chem; 2001 Jul; 276(30):28380-7. PubMed ID: 11369775
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stereochemical probes of the argininosuccinate synthetase reaction.
    Chapman TL; Shull TB; Raushel FM
    Biochemistry; 1986 Aug; 25(17):4739-44. PubMed ID: 3768309
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Escherichia coli transcription termination factor rho. II. Binding of oligonucleotide cofactors.
    Wang Y; von Hippel PH
    J Biol Chem; 1993 Jul; 268(19):13947-55. PubMed ID: 8314761
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interaction of the recA protein of Escherichia coli with adenosine 5'-O-(3-thiotriphosphate).
    Weinstock GM; McEntee K; Lehman IR
    J Biol Chem; 1981 Aug; 256(16):8850-5. PubMed ID: 6455430
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stereochemical course of the 3'----5'-exonuclease activity of DNA polymerase I.
    Gupta AP; Benkovic SJ
    Biochemistry; 1984 Nov; 23(24):5874-81. PubMed ID: 6098302
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme.
    Hingorani MM; O'Donnell M
    J Biol Chem; 1998 Sep; 273(38):24550-63. PubMed ID: 9733750
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Studies of RNA release reaction catalyzed by E. coli transcription termination factor rho using isolated ternary transcription complexes.
    Shigesada K; Wu CW
    Nucleic Acids Res; 1980 Aug; 8(15):3355-69. PubMed ID: 6160471
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RNA passes through the hole of the protein hexamer in the complex with the Escherichia coli Rho factor.
    Burgess BR; Richardson JP
    J Biol Chem; 2001 Feb; 276(6):4182-9. PubMed ID: 11071888
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Studies of the phosphoenzyme intermediate of the yeast plasma membrane proton-translocating ATPase.
    Smith KE; Hammes GG
    J Biol Chem; 1988 Sep; 263(27):13774-8. PubMed ID: 2901418
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ribonucleic acid synthesis termination protein rho function: effects of conditions that destabilize ribonucleic acid secondary structure.
    Richardson JP; Macy MR
    Biochemistry; 1981 Mar; 20(5):1133-9. PubMed ID: 6164385
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adenosine 5'-O-(3-thio)triphosphate, a substrate and potent inhibitor of Escherichia coli succinyl-CoA synthetase. Additional evidence for a cooperative alternating-sites mechanism.
    Nishimura JS; Mitchell T
    J Biol Chem; 1984 Aug; 259(15):9642-5. PubMed ID: 6378911
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis.
    Menetski JP; Bear DG; Kowalczykowski SC
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):21-5. PubMed ID: 2404275
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The stereochemical course of phosphoryl transfer catalyzed by herpes simplex virus type I-induced thymidine kinase.
    Arnold JR; Cheng MS; Cullis PM; Lowe G
    J Biol Chem; 1986 Feb; 261(5):1985-7. PubMed ID: 3003090
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA.
    Bertram JG; Bloom LB; Turner J; O'Donnell M; Beechem JM; Goodman MF
    J Biol Chem; 1998 Sep; 273(38):24564-74. PubMed ID: 9733751
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The stereochemical course of hydrolysis catalysed by snake venom 5'-nucleotide phosphodiesterase.
    Jarvest RL; Lowe G
    Biochem J; 1981 Nov; 199(2):447-51. PubMed ID: 6280670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.