BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35369425)

  • 1. Metabolic Mechanism of Sulfadimethoxine Biodegradation by
    Li B; Wu D; Li Y; Shi Y; Wang C; Sun J; Song C
    Front Microbiol; 2022; 13():840562. PubMed ID: 35369425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025.
    Song C; Liu Z; Wang C; Li S; Kitamura Y
    Sci Total Environ; 2020 Jun; 723():138146. PubMed ID: 32222515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38.
    Song C; Wei Y; Sun J; Song Y; Li S; Kitamura Y
    Bioresour Technol; 2020 Jan; 296():122320. PubMed ID: 31678704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study.
    Song C; Wei Y; Qiu Y; Qi Y; Li Y; Kitamura Y
    Bioresour Technol; 2019 Jan; 272():529-534. PubMed ID: 30391846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38.
    Li S; Zheng X; Chen Y; Song C; Lei Z; Zhang Z
    Bioresour Technol; 2020 Oct; 313():123743. PubMed ID: 32620368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum.
    Chang X; He Y; Song L; Ding J; Ren S; Lv M; Chen L
    J Hazard Mater; 2023 Jul; 454():131528. PubMed ID: 37121041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture.
    Grivalský T; Střížek A; Přibyl P; Lukavský J; Čegan R; Hobza R; Hrouzek P
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5189-5200. PubMed ID: 34146137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism.
    Li J; Min Z; Li W; Xu L; Han J; Li P
    Ecotoxicol Environ Saf; 2020 Mar; 191():110156. PubMed ID: 31958625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phycoremediation resultant lipid production and antioxidant changes in green microalgae Chlorella Sp.
    Ajayan KV; Harilal CC; Selvaraju M
    Int J Phytoremediation; 2018 Sep; 20(11):1144-1151. PubMed ID: 30156920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pressurized liquid extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae Spirulina, Chlorella and Phaeodactylum tricornutum.
    Wang M; Morón-Ortiz Á; Zhou J; Benítez-González A; Mapelli-Brahm P; Meléndez-Martínez AJ; Barba FJ
    Food Chem; 2023 Mar; 405(Pt B):134885. PubMed ID: 36442244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae.
    Vandamme D; Pontes SC; Goiris K; Foubert I; Pinoy LJ; Muylaert K
    Biotechnol Bioeng; 2011 Oct; 108(10):2320-9. PubMed ID: 21557200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsifying properties of water-soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodactylum tricornutum.
    Ebert S; Grossmann L; Hinrichs J; Weiss J
    Food Funct; 2019 Feb; 10(2):754-764. PubMed ID: 30667441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROS-mediated time-varying cytotoxic effects on Phaeodactylum tricornutum under the stress of commercial naphthenic acids.
    Zhihao L; Huanxin Z; Xinyu Z; Tongfei Q; Jun C; Chen G; Yi Z; Chengzong H; Xuexi T; Ying W
    Ecotoxicol Environ Saf; 2022 Sep; 243():114014. PubMed ID: 36027711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astaxanthin production by freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp.
    Raman R; Mohamad SE
    Pak J Biol Sci; 2012 Dec; 15(24):1182-6. PubMed ID: 23755409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium.
    Wu Z; Zhu Y; Huang W; Zhang C; Li T; Zhang Y; Li A
    Bioresour Technol; 2012 Apr; 110():496-502. PubMed ID: 22326335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purple acid phosphatase promoted hydrolysis of organophosphate pesticides in microalgae.
    Wang X; He GH; Wang ZY; Xu HY; Mou JH; Qin ZH; Lin CSK; Yang WD; Zhang Y; Li HY
    Environ Sci Ecotechnol; 2024 Mar; 18():100318. PubMed ID: 37860829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism.
    Vo HNP; Ngo HH; Guo W; Liu Y; Woong Chang S; Nguyen DD; Zhang X; Liang H; Xue S
    Bioresour Technol; 2020 May; 303():122877. PubMed ID: 32028214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum.
    Guzmán S; Gato A; Calleja JM
    Phytother Res; 2001 May; 15(3):224-30. PubMed ID: 11351357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa.
    Xue J; Wang L; Zhang L; Balamurugan S; Li DW; Zeng H; Yang WD; Liu JS; Li HY
    Microb Cell Fact; 2016 Jul; 15(1):120. PubMed ID: 27387324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.