These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35369471)

  • 21. Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae.
    Ye W; Wang Y; Dong S; Tyler BM; Wang Y
    BMC Genomics; 2013 Nov; 14(1):839. PubMed ID: 24286285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
    Anderson RG; Casady MS; Fee RA; Vaughan MM; Deb D; Fedkenheuer K; Huffaker A; Schmelz EA; Tyler BM; McDowell JM
    Plant J; 2012 Dec; 72(6):882-93. PubMed ID: 22709376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members.
    Jiang RH; Tripathy S; Govers F; Tyler BM
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4874-9. PubMed ID: 18344324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions.
    Chen H; Shu H; Wang L; Zhang F; Li X; Ochola SO; Mao F; Ma H; Ye W; Gu T; Jiang L; Wu Y; Wang Y; Kamoun S; Dong S
    Genome Biol; 2018 Oct; 19(1):181. PubMed ID: 30382931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.
    Stam R; Jupe J; Howden AJ; Morris JA; Boevink PC; Hedley PE; Huitema E
    PLoS One; 2013; 8(3):e59517. PubMed ID: 23536880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of microsatellite distribution across eukaryotic genomes.
    Srivastava S; Avvaru AK; Sowpati DT; Mishra RK
    BMC Genomics; 2019 Feb; 20(1):153. PubMed ID: 30795733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The malarial host-targeting signal is conserved in the Irish potato famine pathogen.
    Bhattacharjee S; Hiller NL; Liolios K; Win J; Kanneganti TD; Young C; Kamoun S; Haldar K
    PLoS Pathog; 2006 May; 2(5):e50. PubMed ID: 16733545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of microsatellite distribution patterns in twenty-nine beetle genomes.
    Song X; Yang T; Yan X; Zheng F; Xu X; Zhou C
    Gene; 2020 Oct; 757():144919. PubMed ID: 32603771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Genomic Analysis among Four Representative Isolates of
    Ye W; Wang Y; Tyler BM; Wang Y
    Front Microbiol; 2016; 7():1547. PubMed ID: 27746768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum.
    Goss EM; Press CM; Grünwald NJ
    PLoS One; 2013; 8(11):e79347. PubMed ID: 24244484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).
    Cavagnaro PF; Senalik DA; Yang L; Simon PW; Harkins TT; Kodira CD; Huang S; Weng Y
    BMC Genomics; 2010 Oct; 11():569. PubMed ID: 20950470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of the GAF Sensor, Carbohydrate-Active Enzymes, Elicitins, and RXLRs Differs Markedly Between Two
    Toljamo A; Blande D; Munawar M; Kärenlampi SO; Kokko H
    Phytopathology; 2019 May; 109(5):726-735. PubMed ID: 30412010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinformatic inference of specific and general transcription factor binding sites in the plant pathogen Phytophthora infestans.
    Seidl MF; Wang RP; Van den Ackerveken G; Govers F; Snel B
    PLoS One; 2012; 7(12):e51295. PubMed ID: 23251489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effector Repertoire of
    Rojas-Estevez P; Urbina-Gómez DA; Ayala-Usma DA; Guayazan-Palacios N; Mideros MF; Bernal AJ; Cardenas M; Restrepo S
    Front Genet; 2020; 11():579. PubMed ID: 32582295
    [No Abstract]   [Full Text] [Related]  

  • 35. Comparative Genomic Analysis Reveals Genetic Variation and Adaptive Evolution in the Pathogenicity-Related Genes of
    Lee JH; Siddique MI; Kwon JK; Kang BC
    Front Microbiol; 2021; 12():694136. PubMed ID: 34484141
    [No Abstract]   [Full Text] [Related]  

  • 36. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal.
    McGowan J; Fitzpatrick DA
    mSphere; 2017; 2(6):. PubMed ID: 29202039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome.
    Sahu BP; Majee P; Singh RR; Sahoo A; Nayak D
    Sci Rep; 2020 Aug; 10(1):13852. PubMed ID: 32807836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct patterns of simple sequence repeats and GC distribution in intragenic and intergenic regions of primate genomes.
    Qi WH; Yan CC; Li WJ; Jiang XM; Li GZ; Zhang XY; Hu TZ; Li J; Yue BS
    Aging (Albany NY); 2016 Sep; 8(11):2635-2654. PubMed ID: 27644032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection processes in simple sequence repeats suggest a correlation with their genomic location: insights from a fungal model system.
    Gonthier P; Sillo F; Lagostina E; Roccotelli A; Cacciola OS; Stenlid J; Garbelotto M
    BMC Genomics; 2015 Dec; 16():1107. PubMed ID: 26714466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics.
    Li Y; Chen X; Wu K; Pan J; Long H; Yan Y
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32370063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.