These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 35369483)
1. Hyperaccumulation of Gadolinium by Good NM; Lee HD; Hawker ER; Su MZ; Gilad AA; Martinez-Gomez NC Front Microbiol; 2022; 13():820327. PubMed ID: 35369483 [TBL] [Abstract][Full Text] [Related]
2. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918 [TBL] [Abstract][Full Text] [Related]
3. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
4. Transposon mutagenesis for methylotrophic bacteria using Methylorubrum extorquens AM1 as a model system. Vu HN; Subuyuj GA; Crisostomo RV; Skovran E Methods Enzymol; 2021; 650():159-184. PubMed ID: 33867020 [TBL] [Abstract][Full Text] [Related]
5. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. Good NM; Fellner M; Demirer K; Hu J; Hausinger RP; Martinez-Gomez NC J Biol Chem; 2020 Jun; 295(24):8272-8284. PubMed ID: 32366463 [TBL] [Abstract][Full Text] [Related]
6. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
7. Extracellular and Intracellular Lanthanide Accumulation in the Methylotrophic Wegner CE; Westermann M; Steiniger F; Gorniak L; Budhraja R; Adrian L; Küsel K Appl Environ Microbiol; 2021 Jun; 87(13):e0314420. PubMed ID: 33893117 [TBL] [Abstract][Full Text] [Related]
8. The PedS2/PedR2 Two-Component System Is Crucial for the Rare Earth Element Switch in Pseudomonas putida KT2440. Wehrmann M; Berthelot C; Billard P; Klebensberger J mSphere; 2018 Aug; 3(4):. PubMed ID: 30158283 [TBL] [Abstract][Full Text] [Related]
9. Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Wehrmann M; Billard P; Martin-Meriadec A; Zegeye A; Klebensberger J mBio; 2017 Jun; 8(3):. PubMed ID: 28655819 [TBL] [Abstract][Full Text] [Related]
10. Heterologous expression, purification, and characterization of proteins in the lanthanome. Featherston ER; Mattocks JA; Tirsch JL; Cotruvo JA Methods Enzymol; 2021; 650():119-157. PubMed ID: 33867019 [TBL] [Abstract][Full Text] [Related]
11. Designing and Engineering Lim CK; Villada JC; Chalifour A; Duran MF; Lu H; Lee PKH Front Microbiol; 2019; 10():1027. PubMed ID: 31143170 [No Abstract] [Full Text] [Related]
12. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. Morris CJ; Biville F; Turlin E; Lee E; Ellermann K; Fan WH; Ramamoorthi R; Springer AL; Lidstrom ME J Bacteriol; 1994 Mar; 176(6):1746-55. PubMed ID: 8132470 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of a small-molecule metallophore involved in lanthanide metabolism. Zytnick AM; Gutenthaler-Tietze SM; Aron AT; Reitz ZL; Phi MT; Good NM; Petras D; Daumann LJ; Martinez-Gomez NC Proc Natl Acad Sci U S A; 2024 Aug; 121(32):e2322096121. PubMed ID: 39078674 [TBL] [Abstract][Full Text] [Related]
14. pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Toyama H; Lidstrom ME Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():183-191. PubMed ID: 9467911 [TBL] [Abstract][Full Text] [Related]
15. Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Karaseva T; Fedorov D; Baklagina S; Ponamoreva O; Alferov S; Ekimova G; Abdullatypov A; Trubitsina L; Mustakhimov I Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142248 [TBL] [Abstract][Full Text] [Related]
16. A Periplasmic Lanthanide Mediator, Lanmodulin, in Fujitani Y; Shibata T; Tani A Front Microbiol; 2022; 13():921636. PubMed ID: 35814700 [No Abstract] [Full Text] [Related]
17. Changes in growth, lanthanide binding, and gene expression in Gorniak L; Bucka SL; Nasr B; Cao J; Hellmann S; Schäfer T; Westermann M; Bechwar J; Wegner C-E mSphere; 2024 Oct; 9(10):e0068524. PubMed ID: 39291981 [No Abstract] [Full Text] [Related]
18. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Juma PO; Fujitani Y; Alessa O; Oyama T; Yurimoto H; Sakai Y; Tani A Front Microbiol; 2022; 13():921635. PubMed ID: 35875576 [No Abstract] [Full Text] [Related]
19. Lanthanide-Dependent Methylotrophs of the Family Wegner CE; Gorniak L; Riedel S; Westermann M; Küsel K Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31604774 [TBL] [Abstract][Full Text] [Related]
20. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Daumann LJ; Pol A; Op den Camp HJM; Martinez-Gomez NC Adv Microb Physiol; 2022; 81():1-24. PubMed ID: 36167440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]