BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35369683)

  • 1. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review.
    Nguyen LM; Nguyen NTT; Nguyen TTT; Nguyen TT; Nguyen DTC; Tran TV
    Environ Chem Lett; 2022; 20(3):1929-1963. PubMed ID: 35369683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pyrolysis temperature on characteristics and chloramphenicol adsorption performance of NH
    Tran TV; Jalil AA; Nguyen DTC; Nguyen TTT; Nguyen LTT; Nguyen CV; Alhassan M
    Chemosphere; 2024 May; 355():141599. PubMed ID: 38548079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical review on adsorptive removal of antibiotics: Present situation, challenges and future perspective.
    Mangla D; Annu ; Sharma A; Ikram S
    J Hazard Mater; 2022 Mar; 425():127946. PubMed ID: 34891019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe
    Duman O; Özcan C; Gürkan Polat T; Tunç S
    Environ Pollut; 2019 Jan; 244():723-732. PubMed ID: 30384078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix.
    Wei M; Zheng H; Zeng T; Yang J; Fang X; Zhang C
    Water Sci Technol; 2021 Oct; 84(8):1896-1907. PubMed ID: 34695018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents.
    Ajala OA; Akinnawo SO; Bamisaye A; Adedipe DT; Adesina MO; Okon-Akan OA; Adebusuyi TA; Ojedokun AT; Adegoke KA; Bello OS
    RSC Adv; 2023 Jan; 13(7):4678-4712. PubMed ID: 36760292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Synthesis of Mesoporous Carbons from Fe₃O(BDC)₃ for Chloramphenicol Antibiotic Remediation.
    Tran TV; Nguyen DTC; Le HTN; Bach LG; Vo DN; Hong SS; Phan TT; Nguyen TD
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30744163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why reuse spent adsorbents? The latest challenges and limitations.
    Gkika DA; Mitropoulos AC; Kyzas GZ
    Sci Total Environ; 2022 May; 822():153612. PubMed ID: 35114231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework.
    Zhang Z; Chen Y; Hu C; Zuo C; Wang P; Chen W; Ao T
    Environ Res; 2021 Jul; 198():111254. PubMed ID: 33965392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon.
    Prola LD; Machado FM; Bergmann CP; de Souza FE; Gally CR; Lima EC; Adebayo MA; Dias SL; Calvete T
    J Environ Manage; 2013 Nov; 130():166-75. PubMed ID: 24076517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Weed-Derived Hierarchical Porous Carbon with a Large Specific Surface Area for Efficient Dye and Antibiotic Removal.
    Liang D; Tian X; Zhang Y; Zhu G; Gao Q; Liu J; Yu X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water.
    Chang PH; Mukhopadhyay R; Zhong B; Yang QY; Zhou S; Tzou YM; Sarkar B
    J Colloid Interface Sci; 2023 Apr; 636():459-469. PubMed ID: 36641821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous biochar-supported MnFe
    Wen Z; Xi J; Lu J; Zhang Y; Cheng G; Zhang Y; Chen R
    J Hazard Mater; 2021 Jun; 411():124909. PubMed ID: 33434789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents.
    Ji L; Chen W; Duan L; Zhu D
    Environ Sci Technol; 2009 Apr; 43(7):2322-7. PubMed ID: 19452881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effectiveness of MOFs for the Removal of Pharmaceuticals from Aquatic Environments: A Review Focused on Antibiotics Removal.
    Hooriabad Saboor F; Nasirpour N; Shahsavari S; Kazemian H
    Chem Asian J; 2022 Feb; 17(4):e202101105. PubMed ID: 34941022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.
    Machado FM; Bergmann CP; Fernandes TH; Lima EC; Royer B; Calvete T; Fagan SB
    J Hazard Mater; 2011 Sep; 192(3):1122-31. PubMed ID: 21724329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate removal and recovery by lanthanum-based adsorbents: A review for current advances.
    He Q; Zhao H; Teng Z; Wang Y; Li M; Hoffmann MR
    Chemosphere; 2022 Sep; 303(Pt 1):134987. PubMed ID: 35597457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Adsorbent Derived from Phytolith-Rich Ore for Removal of Tetracycline in Wastewater.
    Liu X; Tang Y; Wang X; Sarwar MT; Zhao X; Liao J; Zhang J; Yang H
    ACS Omega; 2024 Feb; 9(7):8287-8296. PubMed ID: 38405464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution.
    Yu F; Ma J; Wang J; Zhang M; Zheng J
    Chemosphere; 2016 Mar; 146():162-72. PubMed ID: 26714299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.