These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35370366)

  • 1. Justificatory explanations in machine learning: for increased transparency through documenting how key concepts drive and underpin design and engineering decisions.
    Casacuberta D; Guersenzvaig A; Moyano-Fernández C
    AI Soc; 2022 Mar; ():1-15. PubMed ID: 35370366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable AI for Bioinformatics: Methods, Tools and Applications.
    Karim MR; Islam T; Shajalal M; Beyan O; Lange C; Cochez M; Rebholz-Schuhmann D; Decker S
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37478371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translating theory into practice: assessing the privacy implications of concept-based explanations for biomedical AI.
    Lucieri A; Dengel A; Ahmed S
    Front Bioinform; 2023; 3():1194993. PubMed ID: 37484865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causability and explainability of artificial intelligence in medicine.
    Holzinger A; Langs G; Denk H; Zatloukal K; Müller H
    Wiley Interdiscip Rev Data Min Knowl Discov; 2019; 9(4):e1312. PubMed ID: 32089788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making Expert Decisions Easier to Fathom: On the Explainability of Visual Object Recognition Expertise.
    Hegdé J; Bart E
    Front Neurosci; 2018; 12():670. PubMed ID: 30369862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explainability and causability in digital pathology.
    Plass M; Kargl M; Kiehl TR; Regitnig P; Geißler C; Evans T; Zerbe N; Carvalho R; Holzinger A; Müller H
    J Pathol Clin Res; 2023 Jul; 9(4):251-260. PubMed ID: 37045794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparency of AI in Healthcare as a Multilayered System of Accountabilities: Between Legal Requirements and Technical Limitations.
    Kiseleva A; Kotzinos D; De Hert P
    Front Artif Intell; 2022; 5():879603. PubMed ID: 35707765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explanatory pragmatism: a context-sensitive framework for explainable medical AI.
    Nyrup R; Robinson D
    Ethics Inf Technol; 2022; 24(1):13. PubMed ID: 35250370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication.
    Alabi RO; Almangush A; Elmusrati M; Leivo I; Mäkitie A
    Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886221
    [No Abstract]   [Full Text] [Related]  

  • 11. COVID-Net Biochem: an explainability-driven framework to building machine learning models for predicting survival and kidney injury of COVID-19 patients from clinical and biochemistry data.
    Aboutalebi H; Pavlova M; Shafiee MJ; Florea A; Hryniowski A; Wong A
    Sci Rep; 2023 Oct; 13(1):17001. PubMed ID: 37813920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mobile App That Addresses Interpretability Challenges in Machine Learning-Based Diabetes Predictions: Survey-Based User Study.
    Hendawi R; Li J; Roy S
    JMIR Form Res; 2023 Nov; 7():e50328. PubMed ID: 37955948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population Preferences for Performance and Explainability of Artificial Intelligence in Health Care: Choice-Based Conjoint Survey.
    Ploug T; Sundby A; Moeslund TB; Holm S
    J Med Internet Res; 2021 Dec; 23(12):e26611. PubMed ID: 34898454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models.
    Cheng F; Ming Y; Qu H
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1438-1447. PubMed ID: 33074811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explainable artificial intelligence for mental health through transparency and interpretability for understandability.
    Joyce DW; Kormilitzin A; Smith KA; Cipriani A
    NPJ Digit Med; 2023 Jan; 6(1):6. PubMed ID: 36653524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explainability in medicine in an era of AI-based clinical decision support systems.
    Pierce RL; Van Biesen W; Van Cauwenberge D; Decruyenaere J; Sterckx S
    Front Genet; 2022; 13():903600. PubMed ID: 36199569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology.
    Petch J; Di S; Nelson W
    Can J Cardiol; 2022 Feb; 38(2):204-213. PubMed ID: 34534619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies.
    Markus AF; Kors JA; Rijnbeek PR
    J Biomed Inform; 2021 Jan; 113():103655. PubMed ID: 33309898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparency as design publicity: explaining and justifying inscrutable algorithms.
    Loi M; Ferrario A; Viganò E
    Ethics Inf Technol; 2021; 23(3):253-263. PubMed ID: 34867077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining the Rationale of Deep Learning Glaucoma Decisions with Adversarial Examples.
    Chang J; Lee J; Ha A; Han YS; Bak E; Choi S; Yun JM; Kang U; Shin IH; Shin JY; Ko T; Bae YS; Oh BL; Park KH; Park SM
    Ophthalmology; 2021 Jan; 128(1):78-88. PubMed ID: 32598951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.