These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35370590)

  • 1. A Cooperative Shared Control Scheme Based on Intention Recognition for Flexible Assembly Manufacturing.
    Zhou G; Luo J; Xu S; Zhang S
    Front Neurorobot; 2022; 16():850211. PubMed ID: 35370590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Framework for Controlling Work Sequence in Collaborative Human-Robot Assembly Processes.
    Garcia PP; Santos TG; Machado MA; Mendes N
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological Indicators of Fluency and Engagement during Sequential and Simultaneous Modes of Human-Robot Collaboration.
    Ramadurai S; Gutierrez C; Jeong H; Kim M
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):97-111. PubMed ID: 38047355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinating human-robot collaboration by EEG-based human intention prediction and vigilance control.
    Lyu J; Maýe A; Görner M; Ruppel P; Engel AK; Zhang J
    Front Neurorobot; 2022; 16():1068274. PubMed ID: 36531919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration.
    Pupa A; Van Dijk W; Brekelmans C; Secchi C
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative Game-Based Approximate Optimal Control of Modular Robot Manipulators for Human-Robot Collaboration.
    An T; Wang Y; Liu G; Li Y; Dong B
    IEEE Trans Cybern; 2023 Jul; 53(7):4691-4703. PubMed ID: 37224373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mixed-Perception Approach for Safe Human-Robot Collaboration in Industrial Automation.
    Mohammadi Amin F; Rezayati M; van de Venn HW; Karimpour H
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual-Collision-Avoidance Scheme Synthesized by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks.
    Zhang Z; Zheng L; Chen Z; Kong L; Karimi HR
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1052-1066. PubMed ID: 32310785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Arm Motion Prediction for Collision Avoidance in a Shared Workspace.
    Zheng P; Wieber PB; Baber J; Aycard O
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Socially adaptive cognitive architecture for human-robot collaboration in industrial settings.
    Freire IT; Guerrero-Rosado O; Amil AF; Verschure PFMJ
    Front Robot AI; 2024; 11():1248646. PubMed ID: 38915371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-Robot Collaborations in Smart Manufacturing Environments: Review and Outlook.
    Othman U; Yang E
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots.
    Papanagiotou D; Senteri G; Manitsaris S
    Front Neurorobot; 2021; 15():703545. PubMed ID: 34887740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Recurrent Neural Network Architecture-Based Intention Recognition for Human-Robot Collaboration.
    Gao X; Yan L; Wang G; Gerada C
    IEEE Trans Cybern; 2023 Mar; 53(3):1578-1586. PubMed ID: 34637387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Assimilation of Human's Target for Versatile Human-Robot Physical Interaction.
    Takagi A; Li Y; Burdet E
    IEEE Trans Haptics; 2021; 14(2):421-431. PubMed ID: 33226954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OMNIVIL-An Autonomous Mobile Manipulator for Flexible Production.
    Engemann H; Du S; Kallweit S; Cönen P; Dawar H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What about the human in human robot collaboration?
    Baltrusch SJ; Krause F; de Vries AW; van Dijk W; de Looze MP
    Ergonomics; 2022 May; 65(5):719-740. PubMed ID: 34546152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Analysis of Human Comfort in Human-Robot Collaboration.
    Yan Y; Su H; Jia Y
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.