These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35371132)

  • 1. Comparative Transcriptome Analysis of Hard and Tender Fruit Spines of Cucumber to Identify Genes Involved in the Morphological Development of Fruit Spines.
    Lv D; Wang G; Zhang Q; Yu Y; Qin PC; Pang JA; Sun JX; Zhang KY; He HL; Cai R; Pan JS
    Front Plant Sci; 2022; 13():797433. PubMed ID: 35371132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and mapping of ts (tender spines), a gene involved in soft spine development in Cucumis sativus.
    Guo C; Yang X; Wang Y; Nie J; Yang Y; Sun J; Du H; Zhu W; Pan J; Chen Y; Lv D; He H; Lian H; Pan J; Cai R
    Theor Appl Genet; 2018 Jan; 131(1):1-12. PubMed ID: 29116330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.).
    Chen C; Liu M; Jiang L; Liu X; Zhao J; Yan S; Yang S; Ren H; Liu R; Zhang X
    J Exp Bot; 2014 Sep; 65(17):4943-58. PubMed ID: 24962999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HD-ZIP IV transcription factor Tril regulates fruit spine density through gene dosage effects in cucumber.
    Du H; Wang G; Pan J; Chen Y; Xiao T; Zhang L; Zhang K; Wen H; Xiong L; Yu Y; He H; Pan J; Cai R
    J Exp Bot; 2020 Oct; 71(20):6297-6310. PubMed ID: 32710537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development.
    Xie Q; Liu P; Shi L; Miao H; Bo K; Wang Y; Gu X; Zhang S
    Theor Appl Genet; 2018 Jun; 131(6):1239-1252. PubMed ID: 29492617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling reveals genes involved in spine development during CsTTG1-regulated pathway in cucumber (Cucumis sativus L.).
    Guo P; Chang H; Li Q; Wang L; Ren Z; Ren H; Chen C
    Plant Sci; 2020 Feb; 291():110354. PubMed ID: 31928680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene.
    Li Q; Cao C; Zhang C; Zheng S; Wang Z; Wang L; Ren Z
    J Exp Bot; 2015 May; 66(9):2515-26. PubMed ID: 25740926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber.
    Yang S; Wang Y; Zhu H; Zhang M; Wang D; Xie K; Fan P; Dou J; Liu D; Liu B; Chen C; Yan Y; Zhao L; Yang L
    New Phytol; 2022 Mar; 233(6):2643-2658. PubMed ID: 35037268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development.
    Xue S; Dong M; Liu X; Xu S; Pang J; Zhang W; Weng Y; Ren H
    Planta; 2019 Feb; 249(2):407-416. PubMed ID: 30225671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and mapping of Tril, a homeodomain-leucine zipper gene involved in multicellular trichome initiation in Cucumis sativus.
    Wang YL; Nie JT; Chen HM; Guo CL; Pan J; He HL; Pan JS; Cai R
    Theor Appl Genet; 2016 Feb; 129(2):305-16. PubMed ID: 26518574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (
    Liu X; Wang T; Bartholomew E; Black K; Dong M; Zhang Y; Yang S; Cai Y; Xue S; Weng Y; Ren H
    Hortic Res; 2018; 5():31. PubMed ID: 29872536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The WD-Repeat Protein CsTTG1 Regulates Fruit Wart Formation through Interaction with the Homeodomain-Leucine Zipper I Protein Mict.
    Chen C; Yin S; Liu X; Liu B; Yang S; Xue S; Cai Y; Black K; Liu H; Dong M; Zhang Y; Zhao B; Ren H
    Plant Physiol; 2016 Jun; 171(2):1156-68. PubMed ID: 27208299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Metabolome and Transcriptome Analysis Provide Insights into the Effects of Grafting on Fruit Flavor of Cucumber with Different Rootstocks.
    Miao L; Di Q; Sun T; Li Y; Duan Y; Wang J; Yan Y; He C; Wang C; Yu X
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber.
    Zhao L; Zhu H; Zhang K; Wang Y; Wu L; Chen C; Liu X; Yang S; Ren H; Yang L
    Plant Sci; 2020 Nov; 300():110636. PubMed ID: 33180714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem transcriptome signatures underpin the physiological differentiation of the pedicel, stalk and fruit of cucumber (Cucumis sativus L.).
    Zhao J; Li Y; Ding L; Yan S; Liu M; Jiang L; Zhao W; Wang Q; Yan L; Liu R; Zhang X
    Plant Cell Physiol; 2016 Jan; 57(1):19-34. PubMed ID: 26568324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and Genetic Diversity of Cucumber (
    Grumet R; Lin YC; Rett-Cadman S; Malik A
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fragment substitution in the promoter of CsHDZIV11/CsGL3 is responsible for fruit spine density in cucumber (Cucumis sativus L.).
    Zhang H; Wang L; Zheng S; Liu Z; Wu X; Gao Z; Cao C; Li Q; Ren Z
    Theor Appl Genet; 2016 Jul; 129(7):1289-1301. PubMed ID: 27015676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptomic Profiling to Understand Pre- and Post-Ripening Hormonal Regulations and Anthocyanin Biosynthesis in Early Ripening Apple Fruit.
    Onik JC; Hu X; Lin Q; Wang Z
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30065188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber.
    Yang S; Cai Y; Liu X; Dong M; Zhang Y; Chen S; Zhang W; Li Y; Tang M; Zhai X; Weng Y; Ren H
    J Exp Bot; 2018 Apr; 69(8):1887-1902. PubMed ID: 29438529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.
    Zhang YJ; Wang XJ; Wu JX; Chen SY; Chen H; Chai LJ; Yi HL
    PLoS One; 2014; 9(12):e116056. PubMed ID: 25551568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.