These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35371394)

  • 1. A proposed fractional dynamic system and Monte Carlo-based back analysis for simulating the spreading profile of COVID-19.
    Sioofy Khoojine A; Mahsuli M; Shadabfar M; Hosseini VR; Kordestani H
    Eur Phys J Spec Top; 2022; 231(18-20):3427-3437. PubMed ID: 35371394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic.
    Bahloul MA; Chahid A; Laleg-Kirati TM
    IEEE Open J Eng Med Biol; 2020; 1():249-256. PubMed ID: 35402939
    [No Abstract]   [Full Text] [Related]  

  • 3. A fractional-order compartmental model for the spread of the COVID-19 pandemic.
    Biala TA; Khaliq AQM
    Commun Nonlinear Sci Numer Simul; 2021 Jul; 98():105764. PubMed ID: 33746459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A global report on the dynamics of COVID-19 with quarantine and hospitalization: A fractional order model with non-local kernel.
    Ahmad Z; El-Kafrawy SA; Alandijany TA; Giannino F; Mirza AA; El-Daly MM; Faizo AA; Bajrai LH; Kamal MA; Azhar EI
    Comput Biol Chem; 2022 Jun; 98():107645. PubMed ID: 35276575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing day-zero and forecasting the COVID-19 outbreak in Lombardy, Italy: A compartmental modelling and numerical optimization approach.
    Russo L; Anastassopoulou C; Tsakris A; Bifulco GN; Campana EF; Toraldo G; Siettos C
    PLoS One; 2020; 15(10):e0240649. PubMed ID: 33125393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-variant reliability-based prediction of COVID-19 spread using extended SEIVR model and Monte Carlo sampling.
    Shadabfar M; Mahsuli M; Sioofy Khoojine A; Hosseini VR
    Results Phys; 2021 Jul; 26():104364. PubMed ID: 34094819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting COVID-19 pandemic: A data-driven analysis.
    Nabi KN
    Chaos Solitons Fractals; 2020 Oct; 139():110046. PubMed ID: 32834601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model.
    Ma W; Zhao Y; Guo L; Chen Y
    ISA Trans; 2022 May; 124():144-156. PubMed ID: 35086673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral response of population on transmissibility and saturation incidence of deadly pandemic through fractional order dynamical system.
    Abdul Razzaq O; Alam Khan N; Faizan M; Ara A; Ullah S
    Results Phys; 2021 Jul; 26():104438. PubMed ID: 34513576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compartmental model that predicts the effect of social distancing and vaccination on controlling COVID-19.
    Dashtbali M; Mirzaie M
    Sci Rep; 2021 Apr; 11(1):8191. PubMed ID: 33854079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional optimal control of compartmental SIR model of COVID-19: Showing the impact of effective vaccination.
    Banerjee R; Biswas RK
    IFAC Pap OnLine; 2022; 55(1):616-622. PubMed ID: 38621005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model.
    Xu C; Yu Y; Chen Y; Lu Z
    Nonlinear Dyn; 2020; 101(3):1621-1634. PubMed ID: 32952299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compartmental mathematical modelling of dynamic transmission of COVID-19 in Rwanda.
    Mpinganzima L; Ntaganda JM; Banzi W; Muhirwa JP; Nannyonga BK; Niyobuhungiro J; Rutaganda E; Ngaruye I; Ndanguza D; Nzabanita J; Masabo E; Gahamanyi M; Dushimirimana J; Nyandwi B; Kurujyibwami C; Ruganzu LFU; Nyagahakwa V; Mukeshimana S; Ngendahayo JP; Nsabimana JP; Niyigena JD; Uwonkunda J; Mbalawata IS
    IJID Reg; 2023 Mar; 6():99-107. PubMed ID: 36644499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network SIRX model for the spreading of COVID-19.
    Dimou A; Maragakis M; Argyrakis P
    Physica A; 2022 Mar; 590():126746. PubMed ID: 34898823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fractional mathematical model with nonlinear partial differential equations for transmission dynamics of severe acute respiratory syndrome coronavirus 2 infection.
    Thabet H; Kendre S
    Healthc Anal (N Y); 2023 Dec; 4():100209. PubMed ID: 37377904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative.
    Arshad S; Khalid S; Javed S; Amin N; Nawaz F
    Eur Phys J Plus; 2022; 137(7):802. PubMed ID: 35845824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State estimation-based control of COVID-19 epidemic before and after vaccine development.
    Rajaei A; Raeiszadeh M; Azimi V; Sharifi M
    J Process Control; 2021 Jun; 102():1-14. PubMed ID: 33867698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Model with Social Distancing Parameter for Early Estimation of COVID-19 Spread.
    Chandra SK; Bajpai MK
    Arab J Sci Eng; 2022; 47(1):209-218. PubMed ID: 34178570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COVID-19: data-driven dynamics, statistical and distributed delay models, and observations.
    Liu X; Zheng X; Balachandran B
    Nonlinear Dyn; 2020; 101(3):1527-1543. PubMed ID: 32836818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the impact of vaccination in a COVID-19 compartmental model.
    Esteban EP; Almodovar-Abreu L
    Inform Med Unlocked; 2021; 27():100795. PubMed ID: 34816000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.