These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35371946)

  • 41. A deep learning model using chest X-ray for identifying TB and NTM-LD patients: a cross-sectional study.
    Liu CJ; Tsai CC; Kuo LC; Kuo PC; Lee MR; Wang JY; Ko JC; Shih JY; Wang HC; Yu CJ
    Insights Imaging; 2023 Apr; 14(1):67. PubMed ID: 37060419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study.
    Ueda D; Yamamoto A; Shimazaki A; Walston SL; Matsumoto T; Izumi N; Tsukioka T; Komatsu H; Inoue H; Kabata D; Nishiyama N; Miki Y
    BMC Cancer; 2021 Oct; 21(1):1120. PubMed ID: 34663260
    [TBL] [Abstract][Full Text] [Related]  

  • 43. TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network Design for Detection of Tuberculosis Cases From Chest X-Ray Images.
    Wong A; Lee JRH; Rahmat-Khah H; Sabri A; Alaref A; Liu H
    Front Artif Intell; 2022; 5():827299. PubMed ID: 35464996
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making.
    Ciritsis A; Rossi C; Eberhard M; Marcon M; Becker AS; Boss A
    Eur Radiol; 2019 Oct; 29(10):5458-5468. PubMed ID: 30927100
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Artificial Intelligence-Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study.
    Homayounieh F; Digumarthy S; Ebrahimian S; Rueckel J; Hoppe BF; Sabel BO; Conjeti S; Ridder K; Sistermanns M; Wang L; Preuhs A; Ghesu F; Mansoor A; Moghbel M; Botwin A; Singh R; Cartmell S; Patti J; Huemmer C; Fieselmann A; Joerger C; Mirshahzadeh N; Muse V; Kalra M
    JAMA Netw Open; 2021 Dec; 4(12):e2141096. PubMed ID: 34964851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Practical applications of deep learning: classifying the most common categories of plain radiographs in a PACS using a neural network.
    Dratsch T; Korenkov M; Zopfs D; Brodehl S; Baessler B; Giese D; Brinkmann S; Maintz D; Pinto Dos Santos D
    Eur Radiol; 2021 Apr; 31(4):1812-1818. PubMed ID: 32986160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction.
    Lin X; Yang F; Chen Y; Chen X; Wang W; Chen X; Wang Q; Zhang L; Guo H; Liu B; Yu L; Pu H; Zhang P; Wu Z; Li X; Burkhoff D; He K
    Front Cardiovasc Med; 2022; 9():903660. PubMed ID: 36072864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of augmented datasets on deep convolutional neural networks applied to chest radiographs.
    Ogawa R; Kido T; Kido T; Mochizuki T
    Clin Radiol; 2019 Sep; 74(9):697-701. PubMed ID: 31196565
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a deep learning-based image quality control system to detect and filter out ineligible slit-lamp images: A multicenter study.
    Li Z; Jiang J; Chen K; Zheng Q; Liu X; Weng H; Wu S; Chen W
    Comput Methods Programs Biomed; 2021 May; 203():106048. PubMed ID: 33765481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Pathological diagnosis of lung cancer based on deep transfer learning].
    Zhao D; Che NY; Song ZG; Liu CC; Wang L; Shi HY; Dong YJ; Lin HF; Mu J; Ying L; Yang QC; Gao YN; Chen WS; Wang SH; Xu W; Jin ML
    Zhonghua Bing Li Xue Za Zhi; 2020 Nov; 49(11):1120-1125. PubMed ID: 33152815
    [No Abstract]   [Full Text] [Related]  

  • 53. Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms.
    Qin ZZ; Ahmed S; Sarker MS; Paul K; Adel ASS; Naheyan T; Barrett R; Banu S; Creswell J
    Lancet Digit Health; 2021 Sep; 3(9):e543-e554. PubMed ID: 34446265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting Patient Demographics From Chest Radiographs With Deep Learning.
    Adleberg J; Wardeh A; Doo FX; Marinelli B; Cook TS; Mendelson DS; Kagen A
    J Am Coll Radiol; 2022 Oct; 19(10):1151-1161. PubMed ID: 35964688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimal number of strong labels for curriculum learning with convolutional neural network to classify pulmonary abnormalities in chest radiographs.
    Cho Y; Park B; Lee SM; Lee KH; Seo JB; Kim N
    Comput Biol Med; 2021 Sep; 136():104750. PubMed ID: 34392128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.
    Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT
    J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks.
    Annarumma M; Withey SJ; Bakewell RJ; Pesce E; Goh V; Montana G
    Radiology; 2019 Apr; 291(1):196-202. PubMed ID: 30667333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset.
    Jang M; Kim M; Bae SJ; Lee SH; Koh JM; Kim N
    J Bone Miner Res; 2022 Feb; 37(2):369-377. PubMed ID: 34812546
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening.
    Cao XF; Li Y; Xin HN; Zhang HR; Pai M; Gao L
    Chronic Dis Transl Med; 2021 Mar; 7(1):35-40. PubMed ID: 34013178
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deployment and validation of an AI system for detecting abnormal chest radiographs in clinical settings.
    Nguyen NH; Nguyen HQ; Nguyen NT; Nguyen TV; Pham HH; Nguyen TN
    Front Digit Health; 2022; 4():890759. PubMed ID: 35966141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.