These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35372317)

  • 1. Synthetic Biology Tool Development Advances Predictable Gene Expression in the Metabolically Versatile Soil Bacterium
    Immethun CM; Kathol M; Changa T; Saha R
    Front Bioeng Biotechnol; 2022; 10():800734. PubMed ID: 35372317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model.
    Chowdhury NB; Alsiyabi A; Saha R
    Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions.
    Tec-Campos D; Posadas C; Tibocha-Bonilla JD; Thiruppathy D; Glonek N; Zuñiga C; Zepeda A; Zengler K
    PLoS Comput Biol; 2023 Aug; 19(8):e1011371. PubMed ID: 37556472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.
    Larimer FW; Chain P; Hauser L; Lamerdin J; Malfatti S; Do L; Land ML; Pelletier DA; Beatty JT; Lang AS; Tabita FR; Gibson JL; Hanson TE; Bobst C; Torres JL; Peres C; Harrison FH; Gibson J; Harwood CS
    Nat Biotechnol; 2004 Jan; 22(1):55-61. PubMed ID: 14704707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris.
    Karpinets TV; Pelletier DA; Pan C; Uberbacher EC; Melnichenko GV; Hettich RL; Samatova NF
    PLoS One; 2009; 4(2):e4615. PubMed ID: 19242537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris.
    Miller AR; North JA; Wildenthal JA; Tabita FR
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-native N-aroyl L-homoserine lactones are potent modulators of the quorum sensing receptor RpaR in Rhodopseudomonas palustris.
    McInnis CE; Blackwell HE
    Chembiochem; 2014 Jan; 15(1):87-93. PubMed ID: 24281952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous phasin expression in
    Brown B; Immethun C; Alsiyabi A; Long D; Wilkins M; Saha R
    Metab Eng Commun; 2022 Jun; 14():e00191. PubMed ID: 35028290
    [No Abstract]   [Full Text] [Related]  

  • 11. Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris.
    Pechter KB; Gallagher L; Pyles H; Manoil CS; Harwood CS
    J Bacteriol; 2015 Dec; 198(5):867-76. PubMed ID: 26712940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Alternative Nitrogenases in
    du Toit JP; Lea-Smith DJ; Git A; Hervey JRD; Howe CJ; Pott RWM
    ACS Synth Biol; 2021 Sep; 10(9):2167-2178. PubMed ID: 34431288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving bioplastic production by
    Ranaivoarisoa TO; Bai W; Rengasamy K; Steele H; Silberman M; Olabode J; Bose A
    bioRxiv; 2023 May; ():. PubMed ID: 37292853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The purple non-sulfur bacterium Rhodopseudomonas palustris produces novel petrobactin-related siderophores under aerobic and anaerobic conditions.
    Baars O; Morel FMM; Zhang X
    Environ Microbiol; 2018 May; 20(5):1667-1676. PubMed ID: 29473283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris.
    Wang Z; Wen Q; Harwood CS; Liang B; Yang J
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-Molecule Acetylation Controls the Degradation of Benzoate and Photosynthesis in Rhodopseudomonas palustris.
    VanDrisse CM; Escalante-Semerena JC
    mBio; 2018 Oct; 9(5):. PubMed ID: 30327443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources.
    Luxem KE; Leavitt WD; Zhang X
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris.
    Austin S; Kontur WS; Ulbrich A; Oshlag JZ; Zhang W; Higbee A; Zhang Y; Coon JJ; Hodge DB; Donohue TJ; Noguera DR
    Environ Sci Technol; 2015 Jul; 49(14):8914-22. PubMed ID: 26121369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of
    Haq IU; Christensen A; Fixen KR
    Appl Environ Microbiol; 2024 Feb; 90(2):e0210423. PubMed ID: 38206012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.