These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 35372317)

  • 21. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph.
    Fixen KR; Oda Y; Harwood CS
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.
    Fixen KR; Zheng Y; Harris DF; Shaw S; Yang ZY; Dean DR; Seefeldt LC; Harwood CS
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10163-7. PubMed ID: 27551090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protocol to develop a synthetic biology toolkit for the non-model bacterium R. palustris.
    Kathol M; Immethun C; Saha R
    STAR Protoc; 2023 Apr; 4(2):102158. PubMed ID: 37104094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhodopseudomonas palustris: A biotechnology chassis.
    Brown B; Wilkins M; Saha R
    Biotechnol Adv; 2022 Nov; 60():108001. PubMed ID: 35680002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110.
    Sakpirom J; Kantachote D; Siripattanakul-Ratpukdi S; McEvoy J; Khan E
    Chemosphere; 2019 May; 223():455-464. PubMed ID: 30784752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris.
    Huang JJ; Heiniger EK; McKinlay JB; Harwood CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The CouPSTU and TarPQM transporters in Rhodopseudomonas palustris: redundant, promiscuous uptake systems for lignin-derived aromatic substrates.
    Salmon RC; Cliff MJ; Rafferty JB; Kelly DJ
    PLoS One; 2013; 8(3):e59844. PubMed ID: 23555803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers.
    Doud DF; Angenent LT
    Front Microbiol; 2016; 7():1082. PubMed ID: 27471497
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Posttranslational modification of a vanadium nitrogenase.
    Heiniger EK; Harwood CS
    Microbiologyopen; 2015 Aug; 4(4):597-603. PubMed ID: 26097040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the Interplay between Photosynthesis, CO
    Alsiyabi A; Immethun CM; Saha R
    Sci Rep; 2019 Sep; 9(1):12638. PubMed ID: 31477760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air.
    Arashida H; Kugenuma T; Watanabe M; Maeda I
    J Biosci Bioeng; 2019 May; 127(5):589-593. PubMed ID: 30392964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states.
    VerBerkmoes NC; Shah MB; Lankford PK; Pelletier DA; Strader MB; Tabb DL; McDonald WH; Barton JW; Hurst GB; Hauser L; Davison BH; Beatty JT; Harwood CS; Tabita FR; Hettich RL; Larimer FW
    J Proteome Res; 2006 Feb; 5(2):287-98. PubMed ID: 16457594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris.
    Oda Y; Samanta SK; Rey FE; Wu L; Liu X; Yan T; Zhou J; Harwood CS
    J Bacteriol; 2005 Nov; 187(22):7784-94. PubMed ID: 16267302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress toward a biomimetic leaf: 4,000 h of hydrogen production by coating-stabilized nongrowing photosynthetic Rhodopseudomonas palustris.
    Gosse JL; Engel BJ; Hui JC; Harwood CS; Flickinger MC
    Biotechnol Prog; 2010; 26(4):907-18. PubMed ID: 20730752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Rhizobiales-Specific Unipolar Polysaccharide Adhesin Contributes to Rhodopseudomonas palustris Biofilm Formation across Diverse Photoheterotrophic Conditions.
    Fritts RK; LaSarre B; Stoner AM; Posto AL; McKinlay JB
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes.
    Simmons SS; Isokpehi RD; Brown SD; McAllister DL; Hall CC; McDuffy WM; Medley TL; Udensi UK; Rajnarayanan RV; Ayensu WK; Cohly HH
    Bioinform Biol Insights; 2011; 5():115-29. PubMed ID: 22084572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structural basis for high-affinity uptake of lignin-derived aromatic compounds by proteobacterial TRAP transporters.
    Bisson C; Salmon RC; West L; Rafferty JB; Hitchcock A; Thomas GH; Kelly DJ
    FEBS J; 2022 Jan; 289(2):436-456. PubMed ID: 34375507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of growth conditions of acetate utilization byRhodopseudomonas palustris isolated from a freshwater lake.
    Butow B; Dan TB
    Microb Ecol; 1991 Dec; 22(1):317-28. PubMed ID: 24194346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.