BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35373028)

  • 1. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD.
    Schaub JA; Venkatachalam MA; Weinberg JM
    Kidney360; 2021 Feb; 2(2):355-364. PubMed ID: 35373028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of altered tubular metabolism and mitochondrial function in sepsis-associated acute kidney injury.
    Li Y; Nourbakhsh N; Pham H; Tham R; Zuckerman JE; Singh P
    Am J Physiol Renal Physiol; 2020 Aug; 319(2):F229-F244. PubMed ID: 32538150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI.
    Chiba T; Peasley KD; Cargill KR; Maringer KV; Bharathi SS; Mukherjee E; Zhang Y; Holtz A; Basisty N; Yagobian SD; Schilling B; Goetzman ES; Sims-Lucas S
    J Am Soc Nephrol; 2019 Dec; 30(12):2384-2398. PubMed ID: 31575700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive peptide apelin rescues acute kidney injury by protecting the function of renal tubular mitochondria.
    Guan YM; Diao ZL; Huang HD; Zheng JF; Zhang QD; Wang LY; Liu WH
    Amino Acids; 2021 Aug; 53(8):1229-1240. PubMed ID: 34254213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Profiling of Acute Kidney Injury to Chronic Kidney Disease Reveals Novel Oxidative Stress Characteristics in the Failed Repair of Proximal Tubule Cells.
    Yu Z; Zhou Y; Zhang Y; Ning X; Li T; Wei L; Wang Y; Bai X; Sun S
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.
    Lan R; Geng H; Singha PK; Saikumar P; Bottinger EP; Weinberg JM; Venkatachalam MA
    J Am Soc Nephrol; 2016 Nov; 27(11):3356-3367. PubMed ID: 27000065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of metabolic reprogramming in tubular epithelial cells during the progression of acute kidney injury.
    Li Z; Lu S; Li X
    Cell Mol Life Sci; 2021 Aug; 78(15):5731-5741. PubMed ID: 34185125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction and the AKI-to-CKD transition.
    Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid.
    Aparicio-Trejo OE; Avila-Rojas SH; Tapia E; Rojas-Morales P; León-Contreras JC; Martínez-Klimova E; Hernández-Pando R; Sánchez-Lozada LG; Pedraza-Chaverri J
    Free Radic Biol Med; 2020 Jul; 154():18-32. PubMed ID: 32360615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential.
    Zhang X; Agborbesong E; Li X
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased IFT88 expression with primary cilia shortening causes mitochondrial dysfunction in cisplatin-induced tubular injury.
    Fujii R; Hasegawa S; Maekawa H; Inoue T; Yoshioka K; Uni R; Ikeda Y; Nangaku M; Inagi R
    Am J Physiol Renal Physiol; 2021 Sep; 321(3):F278-F292. PubMed ID: 34338030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Signaling, the Mechanisms of AKI-to-CKD Transition and Potential Treatment Targets.
    Chang LY; Chao YL; Chiu CC; Chen PL; Lin HY
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar or Fat? Renal Tubular Metabolism Reviewed in Health and Disease.
    Gewin LS
    Nutrients; 2021 May; 13(5):. PubMed ID: 34065078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways.
    Ye J; Li J; Xia R; Zhou M; Yu L
    Free Radic Res; 2015; 49(11):1393-403. PubMed ID: 26198983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologic Approaches to Improve Mitochondrial Function in AKI and CKD.
    Szeto HH
    J Am Soc Nephrol; 2017 Oct; 28(10):2856-2865. PubMed ID: 28778860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of proximal tubular metabolism in acute kidney injury.
    Piret SE; Mallipattu SK
    Pediatr Nephrol; 2023 Apr; 38(4):975-986. PubMed ID: 36181578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2.
    Wang J; Zhu P; Li R; Ren J; Zhang Y; Zhou H
    Theranostics; 2020; 10(1):384-397. PubMed ID: 31903127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc.
    Arany I; Clark J; Reed DK; Juncos LA
    Nephrol Dial Transplant; 2013 Jun; 28(6):1417-25. PubMed ID: 23328708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney.
    Heidari R; Jafari F; Khodaei F; Shirazi Yeganeh B; Niknahad H
    Nephrology (Carlton); 2018 Apr; 23(4):351-361. PubMed ID: 28141910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells.
    Tammaro A; Scantlebery AML; Rampanelli E; Borrelli C; Claessen N; Butter LM; Soriani A; Colonna M; Leemans JC; Dessing MC; Florquin S
    Front Immunol; 2019; 10():1469. PubMed ID: 31354698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.