BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 35373184)

  • 1. The Role of
    Jayasinghe MK; Lee CY; Tran TTT; Tan R; Chew SM; Yeo BZJ; Loh WX; Pirisinu M; Le MTN
    Front Digit Health; 2022; 4():838590. PubMed ID: 35373184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice.
    Chou WC; Chen Q; Yuan L; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE; Lin Z
    J Control Release; 2023 Sep; 361():53-63. PubMed ID: 37499908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches.
    Lin Z; Chou WC; Cheng YH; He C; Monteiro-Riviere NA; Riviere JE
    Int J Nanomedicine; 2022; 17():1365-1379. PubMed ID: 35360005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical prediction of nanoparticle delivery: from culture media to cell.
    Brown MR; Hondow N; Brydson R; Rees P; Brown AP; Summers HD
    Nanotechnology; 2015 Apr; 26(15):155101. PubMed ID: 25797791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity.
    Cooper DL; Conder CM; Harirforoosh S
    Expert Opin Drug Deliv; 2014 Oct; 11(10):1661-80. PubMed ID: 25054316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
    Liu Y; Wang J; Xiong Q; Hornburg D; Tao W; Farokhzad OC
    Acc Chem Res; 2021 Jan; 54(2):291-301. PubMed ID: 33180454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine.
    Sousa de Almeida M; Susnik E; Drasler B; Taladriz-Blanco P; Petri-Fink A; Rothen-Rutishauser B
    Chem Soc Rev; 2021 May; 50(9):5397-5434. PubMed ID: 33666625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.
    Singh AV; Ansari MHD; Rosenkranz D; Maharjan RS; Kriegel FL; Gandhi K; Kanase A; Singh R; Laux P; Luch A
    Adv Healthc Mater; 2020 Sep; 9(17):e1901862. PubMed ID: 32627972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting coated-nanoparticle drug release systems with perturbation-theory machine learning (PTML) models.
    Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; González-Díaz H
    Nanoscale; 2020 Jul; 12(25):13471-13483. PubMed ID: 32613998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery.
    Dogra P; Butner JD; Ruiz Ramírez J; Chuang YL; Noureddine A; Jeffrey Brinker C; Cristini V; Wang Z
    Comput Struct Biotechnol J; 2020; 18():518-531. PubMed ID: 32206211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints.
    Brown SB; Wang L; Jungels RR; Sharma B
    Acta Biomater; 2020 Jan; 101():469-483. PubMed ID: 31586725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the in vitro nanoparticle-cell interactions via a smoothing-splines mixed-effects model.
    Dogruoz E; Dayanik S; Budak G; Sabuncuoglu I
    Artif Cells Nanomed Biotechnol; 2016 May; 44(3):800-10. PubMed ID: 25962529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic nanoparticle assemblies.
    Wang L; Xu L; Kuang H; Xu C; Kotov NA
    Acc Chem Res; 2012 Nov; 45(11):1916-26. PubMed ID: 22449243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular imaging with theranostic nanoparticles.
    Jokerst JV; Gambhir SS
    Acc Chem Res; 2011 Oct; 44(10):1050-60. PubMed ID: 21919457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Cellular and Subcellular Targeting of Nanoparticles for Drug Delivery.
    Nag OK; Delehanty JB
    Pharmaceutics; 2019 Oct; 11(10):. PubMed ID: 31635367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Study on Nanoparticle Drug Delivery to the Brain: Application of Machine Learning Techniques.
    Yousfan A; Al Rahwanji MJ; Hanano A; Al-Obaidi H
    Mol Pharm; 2024 Jan; 21(1):333-345. PubMed ID: 38060692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.