BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35377122)

  • 1. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture.
    Xu S; Liu Y; Zhang J
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58881-58891. PubMed ID: 35377122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water.
    Xu S; Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2021 Dec; 290():118057. PubMed ID: 34467883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotics induced alterations in cell density, photosynthesis, microcystin synthesis and proteomic expression of Microcystis aeruginosa during CuSO
    Jiang Y; Liu Y; Zhang J
    Aquat Toxicol; 2020 May; 222():105473. PubMed ID: 32203795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic mechanisms for the stimulatory effects of antibiotics on Microcystis aeruginosa during hydrogen peroxide treatment.
    Liu Y; Zhang J; Gao B
    Chemosphere; 2020 May; 247():125837. PubMed ID: 31927185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa.
    Xu S; Liu Y; Zhang J; Gao B
    Chemosphere; 2021 Mar; 267():129244. PubMed ID: 33321278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for the stimulatory effects of a five-component mixture of antibiotics in Microcystis aeruginosa at transcriptomic and proteomic levels.
    Jiang Y; Liu Y; Zhang J
    J Hazard Mater; 2021 Mar; 406():124722. PubMed ID: 33296757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of antibiotic contaminants on Microcystis aeruginosa during potassium permanganate treatment.
    Liu Y; Cui M; Zhang J; Gao B
    Harmful Algae; 2020 Feb; 92():101741. PubMed ID: 32113608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotics promoted the recovery of Microcystis aeruginosa after UV-B radiation at cellular and proteomic levels.
    Jiang Y; Liu Y; Zhang J; Gao B
    Ecotoxicol Environ Saf; 2020 Mar; 190():110080. PubMed ID: 31855790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation-based screening of antibiotic targets.
    Liu Y; Chen S; Zhang J; Li X; Gao B
    Mol Ecol; 2017 Jan; 26(2):689-701. PubMed ID: 27864907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic contaminants reduced the treatment efficiency of UV-C on Microcystis aeruginosa through hormesis.
    Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2020 Jun; 261():114193. PubMed ID: 32088440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae.
    Hernández-García CI; Martínez-Jerónimo F
    Sci Total Environ; 2020 May; 717():137186. PubMed ID: 32084686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfamethoxazole and tetracycline induced alterations in biomass, photosynthesis, lipid productivity, and proteomic expression of Synechocystis sp. PCC 6803.
    Cui M; Liu Y; Zhang J
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30437-30447. PubMed ID: 32462618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic mechanisms for the regulation of growth, photosynthetic activity and nitrogen fixation in Nostoc sp. PCC 7120 exposed to three antibiotic contaminants.
    Liu S; Liu Y; Zhang J
    Ecotoxicol Environ Saf; 2021 Dec; 225():112753. PubMed ID: 34500384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin.
    Liu Y; Chen S; Zhang J; Gao B
    Water Res; 2016 Apr; 93():141-152. PubMed ID: 26900975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of mixed antibiotics on Microcystis aeruginosa during the application of glyphosate and hydrogen peroxide algaecides.
    Yu S; Liu Y; Zhang J; Gao B
    J Phycol; 2019 Apr; 55(2):457-465. PubMed ID: 30633819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.
    Gonçalves AL; Pires JC; Simões M
    Bioresour Technol; 2016 Jan; 200():279-86. PubMed ID: 26496217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of two different humic substances on selected coccal green algae and cyanobacteria--changes in growth and photosynthetic performance.
    Bährs H; Steinberg CE
    Environ Sci Pollut Res Int; 2012 Feb; 19(2):335-46. PubMed ID: 21751018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highlighting of the antialgal activity of organic extracts of Moroccan macrophytes: potential use in cyanobacteria blooms control.
    Tazart Z; Douma M; Caldeira AT; Tebaa L; Mouhri K; Loudiki M
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19630-19637. PubMed ID: 32219655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.