These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35377122)

  • 21. Function of the algicidal bacterium Pseudomonas sp. Go58 isolated from the biofilm on a water plant, and its active compounds, pyoluteorins.
    Chen S; Haga M; Imai I; Sakai R; Fujita MJ
    Sci Total Environ; 2023 May; 872():162088. PubMed ID: 36791856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Community succession during the preventive control of cyanobacterial bloom by hydrogen peroxide in an aquatic microcosm.
    Jiang Y; Fang Y; Liu Y; Liu B; Zhang J
    Ecotoxicol Environ Saf; 2022 Jun; 237():113546. PubMed ID: 35468443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal efficiencies of seven frequently detected antibiotics and related physiological responses in three microalgae species.
    Frascaroli G; Roberts J; Hunter C; Escudero A
    Environ Sci Pollut Res Int; 2024 Feb; 31(9):14178-14190. PubMed ID: 38277110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitigating antibiotic pollution using cyanobacteria: Removal efficiency, pathways and metabolism.
    Pan M; Lyu T; Zhan L; Matamoros V; Angelidaki I; Cooper M; Pan G
    Water Res; 2021 Feb; 190():116735. PubMed ID: 33352526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hormesis effects of amoxicillin on growth and cellular biosynthesis of Microcystis aeruginosa at different nitrogen levels.
    Liu Y; Chen X; Zhang J; Gao B
    Microb Ecol; 2015 Apr; 69(3):608-17. PubMed ID: 25388759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of Scenedesmus obliquus and Microcystis aeruginosa to atrazine: effects of acclimation and mixed cultures, and their removal ability.
    Chalifour A; LeBlanc A; Sleno L; Juneau P
    Ecotoxicology; 2016 Dec; 25(10):1822-1831. PubMed ID: 27670665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2.
    Han SI; Kim S; Choi KY; Lee C; Park Y; Choi YE
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):32255-32265. PubMed ID: 31598929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa.
    Zhao L; Xu K; Juneau P; Huang P; Lian Y; Zheng X; Zhong Q; Zhang W; Xiao F; Wu B; Yan Q; He Z
    Aquat Toxicol; 2021 Jun; 235():105826. PubMed ID: 33862333
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.
    Rico A; Zhao W; Gillissen F; Lürling M; Van den Brink PJ
    Ecotoxicol Environ Saf; 2018 Feb; 148():228-236. PubMed ID: 29055776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactivity of benthic and picoplanktonic estuarine cyanobacteria on growth of photoautotrophs: inhibition versus stimulation.
    Lopes VR; Vasconcelos VM
    Mar Drugs; 2011; 9(5):790-802. PubMed ID: 21673889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms for the increase in lipid production in cyanobacteria during the degradation of antibiotics.
    Fang Y; Liu Y; Zhang J
    Environ Pollut; 2023 Apr; 322():121171. PubMed ID: 36736559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc.
    Xu K; Juneau P
    Aquat Toxicol; 2016 Jan; 170():251-258. PubMed ID: 26675371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different nitrogen levels.
    Yang M; Wang X
    J Hazard Mater; 2019 May; 369():132-141. PubMed ID: 30776596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iTRAQ-based quantitative proteomic analysis of Microcystis aeruginosa exposed to spiramycin at different nutrient levels.
    Chen S; Liu Y; Zhang J; Gao B
    Aquat Toxicol; 2017 Apr; 185():193-200. PubMed ID: 28236765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High prevalence of unstable antibiotic heteroresistance in cyanobacteria causes resistance underestimation.
    Wang Z; Chen Q; Zhang J; Yan H; Chen Y; Chen C; Chen X
    Water Res; 2021 Sep; 202():117430. PubMed ID: 34298276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different phosphorus levels.
    Yang M; Wang X
    Sci Total Environ; 2019 Mar; 658():439-448. PubMed ID: 30579201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa.
    Liu Y; Guan Y; Gao B; Yue Q
    Ecotoxicol Environ Saf; 2012 Dec; 86():23-30. PubMed ID: 23017252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress.
    Ozturk S; Aslim B
    Environ Sci Pollut Res Int; 2010 Mar; 17(3):595-602. PubMed ID: 19727881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection and identification of a mixed cyanobacteria and microalgae culture using derivative spectrophotometry.
    Malhotra A; Örmeci B
    J Photochem Photobiol B; 2023 Jan; 238():112616. PubMed ID: 36502599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.
    Tan X; Zhang D; Duan Z; Parajuli K; Hu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):344-352. PubMed ID: 31788731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.