These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3537719)

  • 1. Mutational analysis of the coordinate expression of the yeast tRNAArg-tRNAAsp gene tandem.
    Reyes VM; Newman A; Abelson J
    Mol Cell Biol; 1986 Jul; 6(7):2436-42. PubMed ID: 3537719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous in vitro transcription of linear DNA fragments containing the tRNAArg-tRNAAsp gene pair from Saccharomyces cerevisiae.
    Kjellin-Straby K; Engelke DR; Abelson J
    DNA; 1984; 3(2):167-71. PubMed ID: 6373202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleolytic processing of a tRNAArg-tRNAAsp dimeric precursor by a homologous component from Saccharomyces cerevisiae.
    Engelke DR; Gegenheimer P; Abelson J
    J Biol Chem; 1985 Jan; 260(2):1271-9. PubMed ID: 2981839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and expression of four mutant aspartic acid tRNA genes from the mitochondria of Saccharomyces cerevisiae.
    Najarian D; Shu HH; Martin NC
    Nucleic Acids Res; 1986 Dec; 14(24):9561-78. PubMed ID: 3543841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mutation in the tRNAAsp gene from yeast mitochondria. Effects on RNA and protein synthesis.
    Miller DL; Najarian DR; Folse JR; Martin NC
    J Biol Chem; 1981 Oct; 256(19):9774-7. PubMed ID: 7024270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequence of a yeast tRNAArg3A gene and its transcription in a homologous in vitro system.
    Villanueva J; Bull P; Valenzuela P; Venegas A
    FEBS Lett; 1984 Feb; 167(1):165-9. PubMed ID: 6321234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and evolution of a mouse tRNA gene cluster encoding tRNAAsp, tRNAGly and tRNAGlu and an unlinked, solitary gene encoding tRNAAsp.
    Looney JE; Harding JD
    Nucleic Acids Res; 1983 Dec; 11(24):8761-75. PubMed ID: 6324100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro construction of yeast tRNAAsp variants: nucleotide substitutions and additions in T-stem and T-loop.
    Carbon P; Ebel JP
    Nucleic Acids Res; 1987 Mar; 15(5):1933-50. PubMed ID: 3550694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription of a Drosophila tRNAArg gene in yeast extract: 5'-flanking sequence dependence for transcription in a heterologous system.
    Schaack J; Söll D
    Nucleic Acids Res; 1985 Apr; 13(8):2803-14. PubMed ID: 3889849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Each element of the Drosophila tRNAArg gene split promoter directs transcription in Xenopus oocytes.
    Sharp S; Dingermann T; Schaack J; Sharp JA; Burke DJ; DeRobertis EM; Söll D
    Nucleic Acids Res; 1983 Dec; 11(24):8677-90. PubMed ID: 6561520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear and mitochondrial revertants of a yeast mitochondrial tRNA mutant.
    Kang YW; Miller DL
    Mol Gen Genet; 1988 Aug; 213(2-3):425-34. PubMed ID: 3054486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence.
    Haumont E; Fournier M; de Henau S; Grosjean H
    Nucleic Acids Res; 1984 Mar; 12(6):2705-15. PubMed ID: 6369251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three regions of a yeast tRNALeu3 gene promote RNA polymerase III transcription.
    Johnson JD; Raymond GJ
    J Biol Chem; 1984 May; 259(9):5990-4. PubMed ID: 6371014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 5- flanking sequences of Drosophila tRNAArg genes control their in vitro transcription in a Drosophila cell extract.
    Dingermann T; Burke DJ; Sharp S; Schaack J; Söll D
    J Biol Chem; 1982 Dec; 257(24):14738-44. PubMed ID: 6924656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal.
    Romby P; Giegé R; Houssier C; Grosjean H
    J Mol Biol; 1985 Jul; 184(1):107-118. PubMed ID: 2411934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro RNA polymerase III system from S. cerevisiae: effects of deletions and point mutations upon SUP4 gene transcription.
    Koski RA; Allison DS; Worthington M; Hall BD
    Nucleic Acids Res; 1982 Dec; 10(24):8127-43. PubMed ID: 6298710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast tRNATyr gene intron is essential for correct modification of its tRNA product.
    Johnson PF; Abelson J
    Nature; 1983 Apr; 302(5910):681-7. PubMed ID: 6339954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the transcription start site of the yeast tRNA(Leu3) gene.
    Fruscoloni P; Zamboni M; Panetta G; De Paolis A; Tocchini-Valentini GP
    Nucleic Acids Res; 1995 Aug; 23(15):2914-8. PubMed ID: 7659514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Euglena gracilis chloroplast transfer RNA transcription units. II. Nucleotide sequence analysis of a tRNAVal-tRNAAsn-tRNAArg-tRNALeu gene cluster.
    Orozco EM; Hallick RB
    J Biol Chem; 1982 Mar; 257(6):3265-75. PubMed ID: 6277930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.