These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35377358)
1. Cell-free Scaled Production and Adjuvant Addition to a Recombinant Major Outer Membrane Protein from Chlamydia muridarum for Vaccine Development. Gilmore SF; He W; Evans AC; Tifrea DF; Pal S; Segelke B; Peters SKG; Vannest BD; Fischer NO; Rasley A; de la Maza LM; Coleman MA J Vis Exp; 2022 Mar; (181):. PubMed ID: 35377358 [TBL] [Abstract][Full Text] [Related]
2. Cell-free production of a functional oligomeric form of a He W; Felderman M; Evans AC; Geng J; Homan D; Bourguet F; Fischer NO; Li Y; Lam KS; Noy A; Xing L; Cheng RH; Rasley A; Blanchette CD; Kamrud K; Wang N; Gouvis H; Peterson TC; Hubby B; Coleman MA J Biol Chem; 2017 Sep; 292(36):15121-15132. PubMed ID: 28739800 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic analysis of chlamydial major outer membrane protein in support of structure elucidation. Hepler RW; Nahas DD; Lucas B; Kaufhold R; Flynn JA; Galli JD; Swoyer R; Wagner JM; Espeseth AS; Joyce JG; Cook JC; Durr E Protein Sci; 2018 Nov; 27(11):1923-1941. PubMed ID: 30144190 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a multisubunit recombinant polymorphic membrane protein and major outer membrane protein T cell vaccine against Chlamydia muridarum genital infection in three strains of mice. Yu H; Karunakaran KP; Jiang X; Brunham RC Vaccine; 2014 Aug; 32(36):4672-80. PubMed ID: 24992718 [TBL] [Abstract][Full Text] [Related]
5. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Li W; Guentzel MN; Seshu J; Zhong G; Murthy AK; Arulanandam BP Clin Vaccine Immunol; 2007 Dec; 14(12):1537-44. PubMed ID: 17942608 [TBL] [Abstract][Full Text] [Related]
6. Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Tifrea DF; Pal S; le Bon C; Cocco MJ; Zoonens M; de la Maza LM Vaccine; 2020 Jun; 38(28):4412-4422. PubMed ID: 32386746 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Chlamydia outer membrane complex to recombinant outer membrane proteins as vaccine. Yu H; Karunakaran KP; Jiang X; Chan Q; Rose C; Foster LJ; Johnson RM; Brunham RC Vaccine; 2020 Apr; 38(16):3280-3291. PubMed ID: 32151463 [TBL] [Abstract][Full Text] [Related]
8. Induction of Protection in Mice against a Tifrea DF; He W; Pal S; Evans AC; Gilmore SF; Fischer NO; Rasley A; Coleman MA; de la Maza LM Vaccines (Basel); 2021 Jul; 9(7):. PubMed ID: 34358171 [No Abstract] [Full Text] [Related]
9. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Pal S; Tatarenkova OV; de la Maza LM Immunology; 2015 Nov; 146(3):432-43. PubMed ID: 26423798 [TBL] [Abstract][Full Text] [Related]
10. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. Wen Z; Boddicker MA; Kaufhold RM; Khandelwal P; Durr E; Qiu P; Lucas BJ; Nahas DD; Cook JC; Touch S; Skinner JM; Espeseth AS; Przysiecki CT; Zhang L BMC Microbiol; 2016 Jul; 16(1):165. PubMed ID: 27464881 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Pal S; Favaroni A; Tifrea DF; Hanisch PT; Luczak SET; Hegemann JH; de la Maza LM Vaccine; 2017 May; 35(19):2543-2549. PubMed ID: 28385608 [TBL] [Abstract][Full Text] [Related]
12. Chlamydia muridarum T cell antigens and adjuvants that induce protective immunity in mice. Yu H; Karunakaran KP; Jiang X; Shen C; Andersen P; Brunham RC Infect Immun; 2012 Apr; 80(4):1510-8. PubMed ID: 22290151 [TBL] [Abstract][Full Text] [Related]
13. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. Hansen J; Jensen KT; Follmann F; Agger EM; Theisen M; Andersen P J Infect Dis; 2008 Sep; 198(5):758-67. PubMed ID: 18652549 [TBL] [Abstract][Full Text] [Related]
14. Transcutaneous immunization with a novel lipid-based adjuvant protects against Chlamydia genital and respiratory infections. Hickey DK; Aldwell FE; Beagley KW Vaccine; 2009 Oct; 27(44):6217-25. PubMed ID: 19698810 [TBL] [Abstract][Full Text] [Related]
15. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Vasilevsky S; Stojanov M; Greub G; Baud D Virulence; 2016; 7(1):11-22. PubMed ID: 26580416 [TBL] [Abstract][Full Text] [Related]
16. The Verma R; Sahu R; Dixit S; Duncan SA; Giambartolomei GH; Singh SR; Dennis VA Front Immunol; 2018; 9():2369. PubMed ID: 30374357 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the immunogenicity of a DNA vaccine encoding a bacterial outer membrane lipoprotein. Buaklin A; Palaga T; Hannaman D; Kerdkaew R; Patarakul K; Jacquet A Mol Biotechnol; 2014 Oct; 56(10):903-10. PubMed ID: 24870617 [TBL] [Abstract][Full Text] [Related]
18. Oral immunization with a novel lipid-based adjuvant protects against genital Chlamydia infection. Hickey DK; Aldwell FE; Beagley KW Vaccine; 2010 Feb; 28(7):1668-72. PubMed ID: 20026449 [TBL] [Abstract][Full Text] [Related]
19. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Yu H; Jiang X; Shen C; Karunakaran KP; Jiang J; Rosin NL; Brunham RC Infect Immun; 2010 May; 78(5):2272-82. PubMed ID: 20231405 [TBL] [Abstract][Full Text] [Related]
20. Protection against genital tract Chlamydia trachomatis infection following intranasal immunization with a novel recombinant MOMP VS2/4 antigen. Hadad R; Marks E; Kalbina I; Schön K; Unemo M; Lycke N; Strid Å; Andersson S APMIS; 2016 Dec; 124(12):1078-1086. PubMed ID: 27859689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]