These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 35377592)
1. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. Dhingra S; Sharma S; Saha S ACS Appl Bio Mater; 2022 Apr; 5(4):1364-1390. PubMed ID: 35377592 [TBL] [Abstract][Full Text] [Related]
2. Tapping the potential of polymer brushes through synthesis. Li B; Yu B; Ye Q; Zhou F Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476 [TBL] [Abstract][Full Text] [Related]
3. Infection resistant polymer brush coating on the surface of biodegradable polyester. Dhingra S; Joshi A; Singh N; Saha S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111465. PubMed ID: 33255047 [TBL] [Abstract][Full Text] [Related]
4. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
5. Toward Infection-Resistant Surfaces: Achieving High Antimicrobial Peptide Potency by Modulating the Functionality of Polymer Brush and Peptide. Yu K; Lo JC; Mei Y; Haney EF; Siren E; Kalathottukaren MT; Hancock RE; Lange D; Kizhakkedathu JN ACS Appl Mater Interfaces; 2015 Dec; 7(51):28591-605. PubMed ID: 26641308 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial brush polypeptide coatings with anionic backbones. Yang F; Liu H; Wei Y; Xue R; Liu Z; Chu X; Tian X; Yin L; Tang H Acta Biomater; 2023 Jan; 155():359-369. PubMed ID: 36400347 [TBL] [Abstract][Full Text] [Related]
7. Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus. He Y; Wan X; Xiao K; Lin W; Li J; Li Z; Luo F; Tan H; Li J; Fu Q Biomater Sci; 2019 Dec; 7(12):5369-5382. PubMed ID: 31621697 [TBL] [Abstract][Full Text] [Related]
8. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034 [TBL] [Abstract][Full Text] [Related]
9. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
10. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. Kumar R; Welle A; Becker F; Kopyeva I; Lahann J ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547 [TBL] [Abstract][Full Text] [Related]
11. Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Dhingra S; Gaur V; Saini V; Rana K; Bhattacharya J; Loho T; Ray S; Bajaj A; Saha S Biomater Sci; 2022 Jul; 10(14):3856-3877. PubMed ID: 35678619 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
13. Biomaterials coated with zwitterionic polymer brush demonstrated significant resistance to bacterial adhesion and biofilm formation in comparison to brush coatings incorporated with antibiotics. Hassani M; Kamankesh M; Rad-Malekshahi M; Rostamizadeh K; Rezaee F; Haririan I; Daghighi SM Colloids Surf B Biointerfaces; 2024 Feb; 234():113671. PubMed ID: 38039822 [TBL] [Abstract][Full Text] [Related]
14. Polymer brush-based approaches for the development of infection-resistant surfaces. Hadjesfandiari N; Yu K; Mei Y; Kizhakkedathu JN J Mater Chem B; 2014 Aug; 2(31):4968-4978. PubMed ID: 32261828 [TBL] [Abstract][Full Text] [Related]
15. Universal Strategy for Efficient Fabrication of Blood Compatible Surfaces via Polydopamine-Assisted Surface-Initiated Activators Regenerated by Electron Transfer Atom-Transfer Radical Polymerization of Zwitterions. Li N; Li T; Qiao XY; Li R; Yao Y; Gong YK ACS Appl Mater Interfaces; 2020 Mar; 12(10):12337-12344. PubMed ID: 32096981 [TBL] [Abstract][Full Text] [Related]
16. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525 [TBL] [Abstract][Full Text] [Related]
17. The synergistic effect of hierarchical structure and alkyl chain length on the antifouling and bactericidal properties of cationic/zwitterionic block polymer brushes. He Y; Wan X; Lin W; Li J; Li Z; Luo F; Li J; Tan H; Fu Q Biomater Sci; 2020 Dec; 8(24):6890-6902. PubMed ID: 32672290 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Ng G; Judzewitsch P; Li M; Pester CW; Jung K; Boyer C Macromol Rapid Commun; 2021 Sep; 42(18):e2100106. PubMed ID: 33834575 [TBL] [Abstract][Full Text] [Related]
19. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Kauffmann E; Ehrat M; Klok HA Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572 [TBL] [Abstract][Full Text] [Related]