BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35377639)

  • 1. A Task-Based Approach to Parallel Restricted Hartree-Fock Calculations.
    Poole D; Galvez Vallejo JL; Gordon MS
    J Chem Theory Comput; 2022 Apr; 18(4):2144-2161. PubMed ID: 35377639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Kid on the Block: Application of Julia to Hartree-Fock Calculations.
    Poole D; Galvez Vallejo JL; Gordon MS
    J Chem Theory Comput; 2020 Aug; 16(8):5006-5013. PubMed ID: 32635730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massively parallel linear-scaling Hartree-Fock exchange and hybrid exchange-correlation functionals with plane wave basis set accuracy.
    Dziedzic J; Womack JC; Ali R; Skylaris CK
    J Chem Phys; 2021 Dec; 155(22):224106. PubMed ID: 34911310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porting Fragmentation Methods to Graphical Processing Units Using an OpenMP Application Programming Interface: Offloading the Fock Build for Low Angular Momentum Functions.
    Pham BQ; Alkan M; Gordon MS
    J Chem Theory Comput; 2023 Apr; 19(8):2213-2221. PubMed ID: 37011288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum supercharger library: hyper-parallelism of the Hartree-Fock method.
    Fernandes KD; Renison CA; Naidoo KJ
    J Comput Chem; 2015 Jul; 36(18):1399-409. PubMed ID: 25975763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers.
    Katouda M; Nakajima T
    J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Mar; 12():85. PubMed ID: 21447171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.
    Pope BJ; Fitch BG; Pitman MC; Rice JJ; Reumann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():433-6. PubMed ID: 22254341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.
    Veeraraghavan S; Mazziotti DA
    J Chem Phys; 2014 Mar; 140(12):124106. PubMed ID: 24697423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications.
    D'Angelo G; Rampone S
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S2. PubMed ID: 25077818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics Program for Generalized Ensemble and Fast Switching Alchemical Simulations.
    Procacci P
    J Chem Inf Model; 2016 Jun; 56(6):1117-21. PubMed ID: 27231982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.
    Wilkinson KA; Hine ND; Skylaris CK
    J Chem Theory Comput; 2014 Nov; 10(11):4782-94. PubMed ID: 26584365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.
    Pope BJ; Fitch BG; Pitman MC; Rice JJ; Reumann M
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2965-9. PubMed ID: 21768044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid MPI/OpenMP parallelization of the effective fragment potential method in the libefp software library.
    Kaliman IA; Slipchenko LV
    J Comput Chem; 2015 Jan; 36(2):129-35. PubMed ID: 25394274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller-Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers.
    Katouda M; Nakajima T
    J Chem Theory Comput; 2013 Dec; 9(12):5373-80. PubMed ID: 26592275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effective Fragment Molecular Orbital Method: Achieving High Scalability and Accuracy for Large Systems.
    Sattasathuchana T; Xu P; Bertoni C; Kim YL; Leang SS; Pham BQ; Gordon MS
    J Chem Theory Comput; 2024 Mar; 20(6):2445-2461. PubMed ID: 38450638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Distributed/Shared Memory Model for the RI-MP2 Method in the Fragment Molecular Orbital Framework.
    Pham BQ; Gordon MS
    J Chem Theory Comput; 2019 Oct; 15(10):5252-5258. PubMed ID: 31509402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An OpenMP-based tool for finding longest common subsequence in bioinformatics.
    Shikder R; Thulasiraman P; Irani P; Hu P
    BMC Res Notes; 2019 Apr; 12(1):220. PubMed ID: 30971295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets.
    Shrimankar DD; Sathe SR
    Bioinform Biol Insights; 2016; 10():255-265. PubMed ID: 27932868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance, Graphics Processing Unit-Accelerated Fock Build Algorithm.
    Barca GMJ; Galvez-Vallejo JL; Poole DL; Rendell AP; Gordon MS
    J Chem Theory Comput; 2020 Dec; 16(12):7232-7238. PubMed ID: 33206515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.