These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35377639)

  • 41. Scaling bioinformatics applications on HPC.
    Mikailov M; Luo FJ; Barkley S; Valleru L; Whitney S; Liu Z; Thakkar S; Tong W; Petrick N
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):501. PubMed ID: 29297287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fermi.jl: A Modern Design for Quantum Chemistry.
    Aroeira GJR; Davis MM; Turney JM; Schaefer HF
    J Chem Theory Comput; 2022 Feb; 18(2):677-686. PubMed ID: 34978451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
    Lan H; Chan Y; Xu K; Schmidt B; Peng S; Liu W
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):267. PubMed ID: 27455061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topical perspective on massive threading and parallelism.
    Farber RM
    J Mol Graph Model; 2011 Sep; 30():82-9. PubMed ID: 21764615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems.
    Brorsen KR; Sirjoosingh A; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2015 Jun; 142(21):214108. PubMed ID: 26049480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rubus: A compiler for seamless and extensible parallelism.
    Adnan M; Aslam F; Nawaz Z; Sarwar SM
    PLoS One; 2017; 12(12):e0188721. PubMed ID: 29211758
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new approach for second-order perturbation theory.
    Tomlinson DG; Asadchev A; Gordon MS
    J Comput Chem; 2016 May; 37(14):1274-82. PubMed ID: 26940648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Efficient Hartree-Fock Implementation Based on the Contraction of Integrals in the Primitive Basis.
    Held J; Hanrath M; Dolg M
    J Chem Theory Comput; 2018 Dec; 14(12):6197-6210. PubMed ID: 30365307
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A PC-based shutter glasses controller for visual stimulation using multithreading in LabWindows/CVI.
    Gramatikov I; Simons K; Guyton D; Gramatikov B
    Comput Methods Programs Biomed; 2017 May; 143():151-158. PubMed ID: 28391813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fast supervised density-based discretization algorithm for classification tasks in the medical domain.
    Aristodimou A; Diavastos A; Pattichis CS
    Health Informatics J; 2022; 28(1):14604582211065397. PubMed ID: 35170333
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fine-grained alignment of cryo-electron subtomograms based on MPI parallel optimization.
    Lü Y; Zeng X; Zhao X; Li S; Li H; Gao X; Xu M
    BMC Bioinformatics; 2019 Aug; 20(1):443. PubMed ID: 31455212
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel parallel algorithm for large-scale Fock matrix construction with small locally distributed memory architectures: RT parallel algorithm.
    Takashima H; Yamada S; Obara S; Kitamura K; Inabata S; Miyakawa N; Tanabe K; Nagashima U
    J Comput Chem; 2002 Nov; 23(14):1337-46. PubMed ID: 12214316
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploiting Thread-Level and Instruction-Level Parallelism to Cluster Mass Spectrometry Data using Multicore Architectures.
    Saeed F; Hoffert JD; Pisitkun T; Knepper MA
    Netw Model Anal Health Inform Bioinform; 2014 Apr; 3():54. PubMed ID: 25045604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of common programming languages used in bioinformatics.
    Fourment M; Gillings MR
    BMC Bioinformatics; 2008 Feb; 9():82. PubMed ID: 18251993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MRIReco.jl: An MRI reconstruction framework written in Julia.
    Knopp T; Grosser M
    Magn Reson Med; 2021 Sep; 86(3):1633-1646. PubMed ID: 33817833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GronOR: Massively parallel and GPU-accelerated non-orthogonal configuration interaction for large molecular systems.
    Straatsma TP; Broer R; Faraji S; Havenith RWA; Suarez LEA; Kathir RK; Wibowo M; de Graaf C
    J Chem Phys; 2020 Feb; 152(6):064111. PubMed ID: 32061226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Massively Parallel Implementation of the CCSD(T) Method Using the Resolution-of-the-Identity Approximation and a Hybrid Distributed/Shared Memory Parallelization Model.
    Datta D; Gordon MS
    J Chem Theory Comput; 2021 Aug; 17(8):4799-4822. PubMed ID: 34279094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.
    Bassen DM; Vilkhovoy M; Minot M; Butcher JT; Varner JD
    BMC Syst Biol; 2017 Jan; 11(1):10. PubMed ID: 28122561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.
    Xia F; Jin G
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450008. PubMed ID: 24969746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.