These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35377784)

  • 1. A touch-based multimodal and cryptographic bio-human-machine interface.
    Lin S; Zhu J; Yu W; Wang B; Sabet KA; Zhao Y; Cheng X; Hojaiji H; Lin H; Tan J; Milla C; Davis RW; Emaminejad S
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2201937119. PubMed ID: 35377784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of driver active interventions during automated driving by displaying trajectory pointers-A driving simulator study.
    Ono S; Sasaki H; Kumon H; Fuwamoto Y; Kondo S; Narumi T; Tanikawa T; Hirose M
    Traffic Inj Prev; 2019; 20(sup1):S152-S156. PubMed ID: 31381449
    [No Abstract]   [Full Text] [Related]  

  • 3. Application of Neural Network Based on Visual Recognition in Color Perception Analysis of Intelligent Vehicle HMI Interactive Interface under User Experience.
    Zhao D
    Comput Intell Neurosci; 2022; 2022():3929110. PubMed ID: 36275979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent HMI in Orthopedic Navigation.
    Wang G; Li L; Xing S; Ding H
    Adv Exp Med Biol; 2018; 1093():207-224. PubMed ID: 30306484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing dynamic and static illustration of an HMI for cooperative driving.
    Kraft AK; Maag C; Baumann M
    Accid Anal Prev; 2020 Sep; 144():105682. PubMed ID: 32659493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Evaluation of Passive Haptic Feedback for Tactile HMI Design in CAVEs.
    Lassagne A; Kemeny A; Posselt J; Merienne F
    IEEE Trans Haptics; 2018; 11(1):119-127. PubMed ID: 28952949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test procedure for evaluating the human-machine interface of vehicles with automated driving systems.
    Naujoks F; Hergeth S; Wiedemann K; Schömig N; Forster Y; Keinath A
    Traffic Inj Prev; 2019; 20(sup1):S146-S151. PubMed ID: 31381445
    [No Abstract]   [Full Text] [Related]  

  • 11. Steering a tractor by means of an EMG-based human-machine interface.
    Gomez-Gil J; San-Jose-Gonzalez I; Nicolas-Alonso LF; Alonso-Garcia S
    Sensors (Basel); 2011; 11(7):7110-26. PubMed ID: 22164006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automotive HMI design and participatory user involvement: review and perspectives.
    François M; Osiurak F; Fort A; Crave P; Navarro J
    Ergonomics; 2017 Apr; 60(4):541-552. PubMed ID: 27167154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system for medical consultation and education using multimodal human/machine communication.
    Akay M; Marsic I; Medl A; Bu G
    IEEE Trans Inf Technol Biomed; 1998 Dec; 2(4):282-91. PubMed ID: 10719539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Pressure-Sensitive Capacitive Touch Keypad for a Green Intelligent Human-Machine Interface.
    Malik MS; Zulfiqar MH; Khan MA; Mehmood MQ; Massoud Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating secondary input devices to support an automotive touchscreen HMI: A cross-cultural simulator study conducted in the UK and China.
    Large DR; Burnett G; Crundall E; Lawson G; Skrypchuk L; Mouzakitis A
    Appl Ergon; 2019 Jul; 78():184-196. PubMed ID: 31046950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driver-passenger collaboration as a basis for human-machine interface design for vehicle navigation systems.
    Antrobus V; Burnett G; Krehl C
    Ergonomics; 2017 Mar; 60(3):321-332. PubMed ID: 27049529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using naturalistic driving films as a design tool for investigating driver requirements in HMI design for ADAS.
    Wang M; Sun D; Chen F
    Work; 2012; 41 Suppl 1():5045-52. PubMed ID: 22317502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EOG-Based Human-Machine Interface to Control a Smart Home Environment for Patients With Severe Spinal Cord Injuries.
    Zhang R; He S; Yang X; Wang X; Li K; Huang Q; Yu Z; Zhang X; Tang D; Li Y
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):89-100. PubMed ID: 29993413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.