BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35377802)

  • 1.
    Truman JW; Riddiford LM
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2201071119. PubMed ID: 35377802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonistic role of the BTB-zinc finger transcription factors Chinmo and Broad-Complex in the juvenile/pupal transition and in growth control.
    Chafino S; Giannios P; Casanova J; Martín D; Franch-Marro X
    Elife; 2023 Apr; 12():. PubMed ID: 37114765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects.
    Ureña E; Manjón C; Franch-Marro X; Martín D
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7024-9. PubMed ID: 24778249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis.
    Kayukawa T; Jouraku A; Ito Y; Shinoda T
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1057-1062. PubMed ID: 28096379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex.
    Ureña E; Chafino S; Manjón C; Franch-Marro X; Martín D
    PLoS Genet; 2016 May; 12(5):e1006020. PubMed ID: 27135810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome profiling identifies multistep regulation through E93, Forkhead and Ecdysone Oxidase in survival of Malpighian tubules during metamorphosis in Drosophila.
    Ojha S; Tapadia MG
    Int J Dev Biol; 2020; 64(4-5-6):331-341. PubMed ID: 32658993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of target gene specificity during metamorphosis by the steroid response gene E93.
    Mou X; Duncan DM; Baehrecke EH; Duncan I
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2949-54. PubMed ID: 22308414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BTB transcription factor, Abrupt, acts cooperatively with Chronologically inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg regeneration.
    Khong H; Hattley KB; Suzuki Y
    Dev Biol; 2024 May; 509():70-84. PubMed ID: 38373692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroid Hormone Ecdysone Signaling Specifies Mushroom Body Neuron Sequential Fate via Chinmo.
    Marchetti G; Tavosanis G
    Curr Biol; 2017 Oct; 27(19):3017-3024.e4. PubMed ID: 28966087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster.
    González-Itier S; Contreras EG; Larraín J; Glavic Á; Faunes F
    Mech Dev; 2018 Dec; 154():107-115. PubMed ID: 29908237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis.
    Belles X
    Arch Insect Biochem Physiol; 2020 Mar; 103(3):e21609. PubMed ID: 31385626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage.
    Belles X; Santos CG
    Insect Biochem Mol Biol; 2014 Sep; 52():60-8. PubMed ID: 25008785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steroid regulation of midgut cell death during Drosophila development.
    Lee CY; Cooksey BA; Baehrecke EH
    Dev Biol; 2002 Oct; 250(1):101-11. PubMed ID: 12297099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.
    Puah WC; Wasser M
    Methods; 2016 Mar; 96():103-117. PubMed ID: 26431669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for the Drosophila dopamine D1-like receptor Dop1R2 at the onset of metamorphosis.
    Regna K; Kurshan PT; Harwood BN; Jenkins AM; Lai CQ; Muskavitch MA; Kopin AS; Draper I
    BMC Dev Biol; 2016 May; 16(1):15. PubMed ID: 27184815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene.
    Kayukawa T; Nagamine K; Ito Y; Nishita Y; Ishikawa Y; Shinoda T
    J Biol Chem; 2016 Jan; 291(4):1751-1762. PubMed ID: 26518872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA miR-927 targets the juvenile hormone primary response gene Krüppel homolog1 to control Drosophila developmental growth.
    He Q; Zhang Y; Dong W
    Insect Mol Biol; 2020 Dec; 29(6):545-554. PubMed ID: 32715555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum.
    Minakuchi C; Namiki T; Shinoda T
    Dev Biol; 2009 Jan; 325(2):341-50. PubMed ID: 19013451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips.
    Minakuchi C; Tanaka M; Miura K; Tanaka T
    Insect Biochem Mol Biol; 2011 Feb; 41(2):125-34. PubMed ID: 21111817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental regulation and functions of the expression of the neuropeptide corazonin in Drosophila melanogaster.
    Lee G; Kim KM; Kikuno K; Wang Z; Choi YJ; Park JH
    Cell Tissue Res; 2008 Mar; 331(3):659-73. PubMed ID: 18087727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.