BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35377969)

  • 1. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy.
    Rimza T; Saha S; Dhand C; Dwivedi N; Patel SS; Singh S; Kumar P
    ChemSusChem; 2022 Jun; 15(11):e202200281. PubMed ID: 35377969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications.
    Qasim M; Clarkson AN; Hinkley SFR
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage.
    Ding RG; Lu GQ; Yan ZF; Wilson MA
    J Nanosci Nanotechnol; 2001 Mar; 1(1):7-29. PubMed ID: 12914026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen fuel and fuel cell technology for cleaner future: a review.
    Singla MK; Nijhawan P; Oberoi AS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):15607-15626. PubMed ID: 33538968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene-A Review.
    Jastrzębski K; Kula P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production technologies - Membrane based separation, storage and challenges.
    Singla S; Shetti NP; Basu S; Mondal K; Aminabhavi TM
    J Environ Manage; 2022 Jan; 302(Pt A):113963. PubMed ID: 34700079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion.
    Chang F; Gao W; Guo J; Chen P
    Adv Mater; 2021 Dec; 33(50):e2005721. PubMed ID: 33834538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable hydrogen generation and storage - a review.
    Sarmah MK; Singh TP; Kalita P; Dewan A
    RSC Adv; 2023 Aug; 13(36):25253-25275. PubMed ID: 37622026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in Biomass-Derived Activated Carbon for Sustainable Hydrogen Storage: A Comprehensive Review.
    Ferdous AR; Shah SS; Shaikh MN; Barai HR; Marwat MA; Oyama M; Aziz MA
    Chem Asian J; 2023 Oct; ():e202300780. PubMed ID: 37811920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Nanomaterials for Hydrogen Storage: Advances, Challenges, and Perspectives.
    Manzoor S; Ali S; Mansha M; Sadaqat M; Ashiq MN; Tahir MN; Khan SA
    Chem Asian J; 2024 May; ():e202400365. PubMed ID: 38705846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon composites and hybrids in sustainability: a review.
    Vilatela JJ; Eder D
    ChemSusChem; 2012 Mar; 5(3):456-78. PubMed ID: 22389320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends and future challenges in hydrogen production and storage research.
    Liu W; Sun L; Li Z; Fujii M; Geng Y; Dong L; Fujita T
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):31092-31104. PubMed ID: 32529621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and Hydrogen Storage Characteristics of Surfactant-Modified Graphene.
    Xu T; Chen J; Yuan W; Li B; Li L; Wu H; Zhou X
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive Boron-Doped Graphene as an Ideal Material for Electrocatalytically Switchable and High-Capacity Hydrogen Storage.
    Tan X; Tahini HA; Smith SC
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32815-32822. PubMed ID: 27934167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review on recycling energy resources and sustainability.
    Massoud M; Vega G; Subburaj A; Partheepan J
    Heliyon; 2023 Apr; 9(4):e15107. PubMed ID: 37095955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
    Wang H; Dai H
    Chem Soc Rev; 2013 Apr; 42(7):3088-113. PubMed ID: 23361617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities.
    Atinafu DG; Yun BY; Wi S; Kang Y; Kim S
    Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage in carbon nanotubes.
    Hirscher M; Becher M
    J Nanosci Nanotechnol; 2003; 3(1-2):3-17. PubMed ID: 12908227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Exfoliation of Expanded Graphite to Graphene-Based Materials and Modification with Palladium Nanoparticles for Hydrogen Storage.
    Chow D; Burns N; Boateng E; van der Zalm J; Kycia S; Chen A
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.