These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3537803)

  • 1. Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylases.
    Hwang PK; Fletterick RJ
    Nature; 1986 Nov 6-12; 324(6092):80-4. PubMed ID: 3537803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of allosteric control in glycogen phosphorylase.
    Hudson JW; Golding GB; Crerar MM
    J Mol Biol; 1993 Dec; 234(3):700-21. PubMed ID: 8254668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic binding studies on the allosteric inhibitor glucose-6-phosphate to T state glycogen phosphorylase b.
    Johnson LN; Snape P; Martin JL; Acharya KR; Barford D; Oikonomakos NG
    J Mol Biol; 1993 Jul; 232(1):253-67. PubMed ID: 8331662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of catalytic and regulatory sites in phosphorylases.
    Palm D; Goerl R; Burger KJ
    Nature; 1985 Feb 7-13; 313(6002):500-2. PubMed ID: 3155826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of the Drosophila glycogen phosphorylase gene.
    Tick G; Cserpán I; Dombrádi V; Mechler BM; Török I; Kiss I
    Biochem Biophys Res Commun; 1999 Apr; 257(1):34-43. PubMed ID: 10092506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbo xylate.
    Oikonomakos NG; Tsitsanou KE; Zographos SE; Skamnaki VT; Goldmann S; Bischoff H
    Protein Sci; 1999 Oct; 8(10):1930-45. PubMed ID: 10548038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes.
    Fukui T; Shimomura S; Nakano K
    Mol Cell Biochem; 1982 Feb; 42(3):129-44. PubMed ID: 7062910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial activation of muscle phosphorylase by replacement of serine 14 with acidic residues at the site of regulatory phosphorylation.
    Buchbinder JL; Luong CB; Browner MF; Fletterick RJ
    Biochemistry; 1997 Jul; 36(26):8039-44. PubMed ID: 9201951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the biochemical differences between rabbit muscle and human liver phosphorylase.
    Rath VL; Newgard CB; Sprang SR; Goldsmith EJ; Fletterick RJ
    Proteins; 1987; 2(3):225-35. PubMed ID: 3447179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The family of glycogen phosphorylases: structure and function.
    Newgard CB; Hwang PK; Fletterick RJ
    Crit Rev Biochem Mol Biol; 1989; 24(1):69-99. PubMed ID: 2667896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary complex crystal structures of glycogen phosphorylase with the transition state analogue nojirimycin tetrazole and phosphate in the T and R states.
    Mitchell EP; Withers SG; Ermert P; Vasella AT; Garman EF; Oikonomakos NG; Johnson LN
    Biochemistry; 1996 Jun; 35(23):7341-55. PubMed ID: 8652510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase.
    Kaiser A; Nishi K; Gorin FA; Walsh DA; Bradbury EM; Schnier JB
    Arch Biochem Biophys; 2001 Feb; 386(2):179-87. PubMed ID: 11368340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural relationships among regulated and unregulated phosphorylases.
    Buchbinder JL; Rath VL; Fletterick RJ
    Annu Rev Biophys Biomol Struct; 2001; 30():191-209. PubMed ID: 11340058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of E. coli glycogen phosphorylase activity by HPr.
    Seok YJ; Koo BM; Sondej M; Peterkofsky A
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):385-93. PubMed ID: 11361069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of an allosteric site in phosphorylase.
    Rath VL; Lin K; Hwang PK; Fletterick RJ
    Structure; 1996 Apr; 4(4):463-73. PubMed ID: 8740368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG; Zographos SE; Johnson LN; Papageorgiou AC; Acharya KR
    J Mol Biol; 1995 Dec; 254(5):900-17. PubMed ID: 7500360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary structure of human liver glycogen synthase deduced by cDNA cloning.
    Nuttall FQ; Gannon MC; Bai G; Lee EY
    Arch Biochem Biophys; 1994 Jun; 311(2):443-9. PubMed ID: 8203908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation.
    Crerar MM; Karlsson O; Fletterick RJ; Hwang PK
    J Biol Chem; 1995 Jun; 270(23):13748-56. PubMed ID: 7775430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The allosteric transition of glycogen phosphorylase.
    Barford D; Johnson LN
    Nature; 1989 Aug; 340(6235):609-16. PubMed ID: 2770867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Glycogen phosphorylase of skeletal muscles].
    Vul'fson PL
    Biokhimiia; 1986 Dec; 51(12):1974-92. PubMed ID: 3542060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.