These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35378911)

  • 1. Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis.
    Hayashi K; Yanagisawa T; Shimabukuro M; Kishida R; Ishikawa K
    Mater Today Bio; 2022 Mar; 14():100247. PubMed ID: 35378911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration.
    Hayashi K; Munar ML; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110848. PubMed ID: 32279778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses.
    Hayashi K; Kishida R; Tsuchiya A; Ishikawa K
    Mater Today Bio; 2019 Sep; 4():100031. PubMed ID: 32159156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration.
    Hayashi K; Yanagisawa T; Kishida R; Tsuchiya A; Ishikawa K
    Comput Struct Biotechnol J; 2023; 21():2514-2523. PubMed ID: 37077175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular Honeycombs Composed of Carbonate Apatite, Hydroxyapatite, and β-Tricalcium Phosphate as Bone Graft Substitutes: Effects of Composition on Bone Formation and Maturation.
    Hayashi K; Kishida R; Tsuchiya A; Ishikawa K
    ACS Appl Bio Mater; 2020 Mar; 3(3):1787-1795. PubMed ID: 35021668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteogenesis of honeycomb β-tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study.
    Lu T; Feng S; He F; Ye J
    J Biomed Mater Res A; 2020 Mar; 108(3):645-653. PubMed ID: 31747100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System.
    Hayashi K; Yanagisawa T; Kishida R; Ishikawa K
    ACS Nano; 2022 Aug; 16(8):11755-11768. PubMed ID: 35833725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds.
    Sakemi Y; Hayashi K; Tsuchiya A; Nakashima Y; Ishikawa K
    J Biomed Mater Res A; 2021 Sep; 109(9):1613-1622. PubMed ID: 33644971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration.
    Hayashi K; Shimabukuro M; Ishikawa K
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3762-3772. PubMed ID: 35020349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonate apatite artificial bone.
    Ishikawa K; Hayashi K
    Sci Technol Adv Mater; 2021; 22(1):683-694. PubMed ID: 34434075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds.
    Hayashi K; Ishikawa K
    J Mater Chem B; 2020 Sep; 8(37):8536-8545. PubMed ID: 32822446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure.
    Kudoh K; Fukuda N; Akita K; Kudoh T; Takamaru N; Kurio N; Hayashi K; Ishikawa K; Miyamoto Y
    J Mater Sci Mater Med; 2022 Dec; 34(1):2. PubMed ID: 36586041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Honeycomb Scaffold-Guided Bone Reconstruction of Critical-Sized Defects in Rabbit Ulnar Shafts.
    Shibahara K; Hayashi K; Nakashima Y; Ishikawa K
    ACS Appl Bio Mater; 2021 Sep; 4(9):6821-6831. PubMed ID: 35006982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver phosphate-modified carbonate apatite honeycomb scaffolds for anti-infective and pigmentation-free bone tissue engineering.
    Hayashi K; Shimabukuro M; Zhang C; Taleb Alashkar AN; Kishida R; Tsuchiya A; Ishikawa K
    Mater Today Bio; 2024 Aug; 27():101161. PubMed ID: 39155941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally optimized honeycomb scaffolds with outstanding ability for vertical bone augmentation.
    Hayashi K; Shimabukuro M; Kishida R; Tsuchiya A; Ishikawa K
    J Adv Res; 2022 Nov; 41():101-112. PubMed ID: 36328740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the Geometrical Structure of a Honeycomb TCP on Relationship between Bone / Cartilage Formation and Angiogenesis.
    Matsuda H; Takabatake K; Tsujigiwa H; Watanabe S; Ito S; Kawai H; Hamada M; Yoshida S; Nakano K; Nagatsuka H
    Int J Med Sci; 2018; 15(14):1582-1590. PubMed ID: 30588180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks.
    Elsheikh M; Kishida R; Hayashi K; Tsuchiya A; Shimabukuro M; Ishikawa K
    Regen Biomater; 2022; 9(1):rbac010. PubMed ID: 35449826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering. III: Characterization of porous structure.
    Zhang J; Xiao D; He X; Shi F; Luo P; Zhi W; Duan K; Weng J
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():223-229. PubMed ID: 29752092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.