These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35379044)
1. Aerogel and expanded perlite incorporated lightweight cementitious composites containing crushed glass: Evaluation of the drying shrinkage and alkali-silica expansion. Shah SN; Tan TH; Tey OW; Leong GW; Chin YS; Yuen CW; Mo KH Sci Prog; 2022; 105(2):368504221091186. PubMed ID: 35379044 [TBL] [Abstract][Full Text] [Related]
2. Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials. Cui P; Wan Y; Shao X; Ling X; Zhao L; Gong Y; Zhu C Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297092 [TBL] [Abstract][Full Text] [Related]
3. Expansion Control of Alkali-Activated Materials Using Waste Glass Cullet from Photovoltaic Panels as Fine Aggregates. Yamanouchi R; Yasui K; Yamada H; Fukunaga T; Harada H Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410472 [TBL] [Abstract][Full Text] [Related]
4. A study on the potential use of paper sludge ash in concrete with glass aggregate. Mavroulidou M; Awoliyi S Waste Manag Res; 2018 Nov; 36(11):1061-1065. PubMed ID: 30289376 [TBL] [Abstract][Full Text] [Related]
5. Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Adhikary SK; Rudžionis Ž; Tučkutė S; Ashish DK Sci Rep; 2021 Jan; 11(1):2104. PubMed ID: 33483572 [TBL] [Abstract][Full Text] [Related]
6. Recycling dredged harbor sediment to construction materials by sintering with steel slag and waste glass: Characteristics, alkali-silica reactivity and metals stability. Lim YC; Shih YJ; Tsai KC; Yang WD; Chen CW; Dong CD J Environ Manage; 2020 Sep; 270():110869. PubMed ID: 32507745 [TBL] [Abstract][Full Text] [Related]
7. Effect of Cementitious Materials on the Engineering Properties of Lightweight Aggregate Mortars Containing Recycled Water. Lee JI; Bae SH; Kim JH; Choi SJ Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269197 [TBL] [Abstract][Full Text] [Related]
8. Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials. Lv Y; Wang C; Han W; Li X; Peng H Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112050 [TBL] [Abstract][Full Text] [Related]
9. Research Development in Silica Aerogel Incorporated Cementitious Composites-A Review. Ślosarczyk A; Vashchuk A; Klapiszewski Ł Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406329 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the Effect of Blended Aggregate on the Strength and Drying Shrinkage Characteristics of Alkali-Activated Slag Mortar. Kang C; Park Y; Kim T Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793277 [TBL] [Abstract][Full Text] [Related]
11. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3. Topçu IB; Boğa AR; Bilir T Waste Manag; 2008; 28(5):878-84. PubMed ID: 17570652 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres. Natarajan S; Karuppiah G ScientificWorldJournal; 2014; 2014():646840. PubMed ID: 24707213 [TBL] [Abstract][Full Text] [Related]
13. Shrinkage, Permeation and Freeze-Thaw Characteristics of Ambient Cured High Calcium-Based Alkali-Activated Engineered Composites. Hossain KMA; Sood D Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005031 [TBL] [Abstract][Full Text] [Related]
14. Combined effect of silica fume and fly ash as cementitious material on strength characteristics, embodied carbon, and cost of autoclave aerated concrete. Lashari AR; Kumar A; Kumar R; Rizvi SH Environ Sci Pollut Res Int; 2023 Feb; 30(10):27875-27883. PubMed ID: 36394814 [TBL] [Abstract][Full Text] [Related]
15. Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete. Kumar A; Bheel N; Ahmed I; Rizvi SH; Kumar R; Jhatial AA Environ Sci Pollut Res Int; 2022 Jan; 29(1):1210-1222. PubMed ID: 34350574 [TBL] [Abstract][Full Text] [Related]
16. Strength Characteristics and Microstructure Analysis of Alkali-Activated Slag-Fly Ash Cementitious Material. Zhu C; Wan Y; Wang L; Ye Y; Yu H; Yang J Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079547 [TBL] [Abstract][Full Text] [Related]
17. The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites. Hossain KMA; Sood D Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512351 [TBL] [Abstract][Full Text] [Related]
18. A Comprehensive Study on Non-Proprietary Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials. Mousavinezhad S; Gonzales GJ; Toledo WK; Garcia JM; Newtson CM; Allena S Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048916 [TBL] [Abstract][Full Text] [Related]
19. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue-based alkali-activated cementitious materials. Zhao S; Muhammad F; Yu L; Xia M; Huang X; Jiao B; Lu N; Li D Environ Sci Pollut Res Int; 2019 Sep; 26(25):25609-25620. PubMed ID: 31267393 [TBL] [Abstract][Full Text] [Related]
20. Examining the Workability, Mechanical, and Thermal Characteristics of Eco-Friendly, Structural Self-Compacting Lightweight Concrete Enhanced with Fly Ash and Silica Fume. Akbulut ZF; Yavuz D; Tawfik TA; Smarzewski P; Guler S Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]