These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35379354)

  • 1. Mical modulates Tau toxicity via cysteine oxidation in vivo.
    Prifti E; Tsakiri EN; Vourkou E; Stamatakis G; Samiotaki M; Skoulakis EMC; Papanikolopoulou K
    Acta Neuropathol Commun; 2022 Apr; 10(1):44. PubMed ID: 35379354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Two Cysteines of Tau Protein Are Functionally Distinct and Contribute Differentially to Its Pathogenicity
    Prifti E; Tsakiri EN; Vourkou E; Stamatakis G; Samiotaki M; Papanikolopoulou K
    J Neurosci; 2021 Jan; 41(4):797-810. PubMed ID: 33334867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Production of the Mical Redox Domain for Enzymology and F-actin Disassembly Assays.
    Yoon J; Wu H; Hung RJ; Terman JR
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The MICALs are a Family of F-actin Dismantling Oxidoreductases Conserved from Drosophila to Humans.
    Wu H; Yesilyurt HG; Yoon J; Terman JR
    Sci Rep; 2018 Jan; 8(1):937. PubMed ID: 29343822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of actin microfilaments by human MICAL proteins.
    Giridharan SS; Rohn JL; Naslavsky N; Caplan S
    J Cell Sci; 2012 Feb; 125(Pt 3):614-24. PubMed ID: 22331357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of Drosophila as a model system for studying tauopathies such as Alzheimer's disease.
    Sivanantharajah L; Mudher A; Shepherd D
    J Neurosci Methods; 2019 May; 319():77-88. PubMed ID: 30633936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic reduction of tyramine β hydroxylase suppresses Tau toxicity in a Drosophila model of tauopathy.
    Nangia V; O'Connell J; Chopra K; Qing Y; Reppert C; Chai CM; Bhasiin K; Colodner KJ
    Neurosci Lett; 2021 Jun; 755():135937. PubMed ID: 33910059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filamin-A and Myosin VI colocalize with fibrillary Tau protein in Alzheimer's disease and FTDP-17 brains.
    Feuillette S; Deramecourt V; Laquerriere A; Duyckaerts C; Delisle MB; Maurage CA; Blum D; Buée L; Frébourg T; Campion D; Lecourtois M
    Brain Res; 2010 Jul; 1345():182-9. PubMed ID: 20460118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MICALs.
    Alto LT; Terman JR
    Curr Biol; 2018 May; 28(9):R538-R541. PubMed ID: 29738722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MICAL-family proteins: Complex regulators of the actin cytoskeleton.
    Giridharan SS; Caplan S
    Antioxid Redox Signal; 2014 May; 20(13):2059-73. PubMed ID: 23834433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminothienopyridazines and methylene blue affect Tau fibrillization via cysteine oxidation.
    Crowe A; James MJ; Lee VM; Smith AB; Trojanowski JQ; Ballatore C; Brunden KR
    J Biol Chem; 2013 Apr; 288(16):11024-37. PubMed ID: 23443659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics.
    Vanoni MA
    Arch Biochem Biophys; 2017 Oct; 632():118-141. PubMed ID: 28602956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mical links semaphorins to F-actin disassembly.
    Hung RJ; Yazdani U; Yoon J; Wu H; Yang T; Gupta N; Huang Z; van Berkel WJ; Terman JR
    Nature; 2010 Feb; 463(7282):823-7. PubMed ID: 20148037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal-regulated oxidation of proteins via MICAL.
    Ortegón Salas C; Schneider K; Lillig CH; Gellert M
    Biochem Soc Trans; 2020 Apr; 48(2):613-620. PubMed ID: 32219383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly.
    Hung RJ; Terman JR
    Cytoskeleton (Hoboken); 2011 Aug; 68(8):415-33. PubMed ID: 21800438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein.
    Feuillette S; Miguel L; Frébourg T; Campion D; Lecourtois M
    J Neurochem; 2010 May; 113(4):895-903. PubMed ID: 20193038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.
    Hannan SB; Dräger NM; Rasse TM; Voigt A; Jahn TR
    J Neurochem; 2016 Apr; 137(1):12-25. PubMed ID: 26756400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICAL-like1 mediates epidermal growth factor receptor endocytosis.
    Abou-Zeid N; Pandjaitan R; Sengmanivong L; David V; Le Pavec G; Salamero J; Zahraoui A
    Mol Biol Cell; 2011 Sep; 22(18):3431-41. PubMed ID: 21795389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal guidance: a redox signal involving Mical.
    Bernstein BW; Bamburg JR
    Curr Biol; 2010 Apr; 20(8):R360-2. PubMed ID: 21749956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide bond formation in microtubule-associated tau protein promotes tau accumulation and toxicity in vivo.
    Saito T; Chiku T; Oka M; Wada-Kakuda S; Nobuhara M; Oba T; Shinno K; Abe S; Asada A; Sumioka A; Takashima A; Miyasaka T; Ando K
    Hum Mol Genet; 2021 Oct; 30(21):1955-1967. PubMed ID: 34137825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.